Behaviour of solutions of some abstract functional differential equations and application to predator—prey dynamics☆

[1]  A. Wörz-Busekros,et al.  Global Stability in Ecological Systems with Continuous Time Delay , 1978 .

[2]  F. Rothe Convergence to the equilibrium state in the Volterra-Lotka diffusion equations , 1976, Journal of mathematical biology.

[3]  A. Hastings Global stability in Lotka-Volterra systems with diffusion , 1978 .

[4]  S. Leela,et al.  Existence of solutions in a closed set for delay differential equations in Banach spaces , 1978 .

[5]  Anthony W. Leung,et al.  Limiting behaviour for a prey-predator model with diffusion and crowding effects , 1978 .

[6]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[7]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[8]  Joel Smoller,et al.  Diffusion and the Predator-Prey Interaction , 1977 .

[9]  V. Lakshmikantham,et al.  Existence and uniqueness of solutions of delay differential equations on a closed subset of a Banach space , 1978 .

[10]  J. Cushing,et al.  On the behavior of solutions of predator-prey equations with hereditary terms , 1975 .

[11]  A. Leung Conditions for Global Stability Concerning a Prey-Predator Model with Delay Effects , 1979 .

[12]  P. Chow,et al.  Nonlinear reaction-diffusion models for interacting populations , 1978 .

[13]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics , 1977 .

[14]  Nicholas D. Alikakos,et al.  An application of the invariance principle to reaction-diffusion equations , 1979 .

[15]  R. Martin,et al.  Differential equations on closed subsets of a Banach space , 1973 .