Unitary partitioning in general constraint preserving DAE integrators

A number of numerical algorithms have been developed for various special classes of DAEs. This paper describes a new variable step size, constraint preserving integrator for general nonlinear fully implicit higher index DAEs. Numerical implementation issues are discussed. Numerical examples illustrate the effectiveness of the new method.

[1]  W. Rheinboldt,et al.  A general existence and uniqueness theory for implicit differential-algebraic equations , 1991, Differential and Integral Equations.

[2]  S. Campbell,et al.  Progress on a general numerical method for nonlinear higher index DAEs II , 1994 .

[3]  Stephen L. Campbell,et al.  Utilization of automatic differentiation in control algorithms , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[4]  Werner C. Rheinboldt,et al.  Solving algebraically explicit DAEs with the MANPAK-manifold-algorithms , 1997 .

[5]  F. Potra Implementation of linear multistep methods for solving constrained equations of motion , 1993 .

[6]  Volker Mehrmann,et al.  A New Software Package for Linear Differential-Algebraic Equations , 1997, SIAM J. Sci. Comput..

[7]  Stephen L. Campbell,et al.  Constraint preserving integrators for general nonlinear higher index DAEs , 1995 .

[8]  Anders Barrlund,et al.  Constrained least squares methods for linear timevarying DAE systems , 1991 .

[9]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[10]  Stephen L. Campbell,et al.  Solvability of General Differential Algebraic Equations , 1995, SIAM J. Sci. Comput..

[11]  W. Rheinboldt,et al.  On the numerical solution of the Euler-Lagrange equations , 1995 .

[12]  Volker Mehrmann,et al.  A New Class of Discretization Methods for the Solution of Linear Differential-Algebraic Equations with Variable Coefficients , 1996 .

[13]  Anders Barrlund,et al.  Comparing stability properties of three methods in DAEs or ODEs with invariants , 1995 .

[14]  W. Rheinboldt,et al.  A Geometric Treatment of Implicit Differential-Algebraic Equations , 1994 .

[15]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[16]  F. Potra,et al.  Implicit Numerical Integration for Euler-Lagrange Equations via Tangent Space Parametrization∗ , 1991 .

[17]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[18]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[19]  S. Campbell High-Index Differential Algebraic Equations , 1995 .

[20]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[21]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[22]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[23]  C. W. Gear,et al.  The index of general nonlinear DAEs , 1995 .

[24]  Florian A. Potra,et al.  Differential-Geometric Techniques for Solving Differential Algebraic Equations , 1990 .

[25]  Stephen L. Campbell,et al.  Least squares completions for nonlinear differential algebraic equations , 1993 .

[26]  Volker Mehrmann,et al.  Regular solutions of nonlinear differential-algebraic equations and their numerical determination , 1998 .