Time-stepping discontinuous Galerkin methods for fractional diffusion problems
暂无分享,去创建一个
[1] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[2] A. M. Mathai,et al. The H-Function: Theory and Applications , 2009 .
[3] William McLean,et al. Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..
[4] Mingrong Cui. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.
[5] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[6] Kassem Mustapha,et al. Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .
[7] Fawang Liu,et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .
[8] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[9] K ASSEM,et al. Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .
[10] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[11] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[12] W. McLean. Regularity of solutions to a time-fractional diffusion equation , 2010 .
[13] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[14] William McLean,et al. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.
[15] William McLean,et al. A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.
[16] William McLean,et al. Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..
[17] Fawang Liu,et al. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..
[18] Santos B. Yuste,et al. On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.
[19] Nasser Hassan Sweilam,et al. CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION , 2012 .
[20] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[21] William McLean,et al. Fast Summation by Interval Clustering for an Evolution Equation with Memory , 2012, SIAM J. Sci. Comput..
[22] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[23] K. Mustapha. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .
[24] Zhi-Zhong Sun,et al. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..
[25] Kassem Mustapha,et al. An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..
[26] D. Schötzau,et al. Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .
[27] Santos B. Yuste,et al. An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .
[28] William McLean,et al. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.
[29] Kassem Mustapha,et al. A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..
[30] Fawang Liu,et al. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.
[31] Arak M. Mathai,et al. The H-Function , 2010 .
[32] Hong Wang,et al. An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..
[33] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[34] Santos B. Yuste,et al. On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .
[35] Xuan Zhao,et al. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..
[36] Mingrong Cui,et al. Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..
[37] I M Sokolov,et al. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.