Time-stepping discontinuous Galerkin methods for fractional diffusion problems

Time-stepping $$hp$$hp-versions discontinuous Galerkin (DG) methods for the numerical solution of fractional subdiffusion problems of order $$-\alpha $$-α with $$-1<\alpha <0$$-1<α<0 will be proposed and analyzed. Generic $$hp$$hp-version error estimates are derived after proving the stability of the approximate solution. For $$h$$h-version DG approximations on appropriate graded meshes near $$t=0$$t=0, we prove that the error is of order $$O(k^{\max \{2,p\}+\frac{\alpha }{2}})$$O(kmax{2,p}+α2), where $$k$$k is the maximum time-step size and $$p\ge 1$$p≥1 is the uniform degree of the DG solution. For $$hp$$hp-version DG approximations, by employing geometrically refined time-steps and linearly increasing approximation orders, exponential rates of convergence in the number of temporal degrees of freedom are shown. Finally, some numerical tests are given.

[1]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[2]  A. M. Mathai,et al.  The H-Function: Theory and Applications , 2009 .

[3]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[4]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[5]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[6]  Kassem Mustapha,et al.  Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .

[7]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .

[8]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[9]  K ASSEM,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[11]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[12]  W. McLean Regularity of solutions to a time-fractional diffusion equation , 2010 .

[13]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[14]  William McLean,et al.  Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.

[15]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[16]  William McLean,et al.  Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..

[17]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[18]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[19]  Nasser Hassan Sweilam,et al.  CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION , 2012 .

[20]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[21]  William McLean,et al.  Fast Summation by Interval Clustering for an Evolution Equation with Memory , 2012, SIAM J. Sci. Comput..

[22]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[23]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[24]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[25]  Kassem Mustapha,et al.  An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..

[26]  D. Schötzau,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[27]  Santos B. Yuste,et al.  An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .

[28]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[29]  Kassem Mustapha,et al.  A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[30]  Fawang Liu,et al.  Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.

[31]  Arak M. Mathai,et al.  The H-Function , 2010 .

[32]  Hong Wang,et al.  An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..

[33]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[34]  Santos B. Yuste,et al.  On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .

[35]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[36]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[37]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.