Fractographical quantitative analysis of EN-AW 2024 aluminum alloy after creep pre-strain and LCF loading

[1]  B. Skrotzki,et al.  Creep-Fatigue of P92 in Service-Like Tests with Combined Stress- and Strain-Controlled Dwell Times , 2022, International Journal of Fatigue.

[2]  Xian‐Cheng Zhang,et al.  Evaluation of fatigue and creep-fatigue damage levels on the basis of engineering damage mechanics approach , 2022, International Journal of Fatigue.

[3]  G. Lesiuk,et al.  Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings , 2022, International Journal of Fatigue.

[4]  J. Correia,et al.  On the use of the cumulative strain energy density for fatigue life assessment in advanced high-strength steels , 2022, International Journal of Fatigue.

[5]  A. Seweryn,et al.  Experimental investigations and damage growth modeling of EN‐AW 2024 aluminum alloy under LCF loading accounting creep pre‐deformation , 2022, Fatigue & Fracture of Engineering Materials & Structures.

[6]  J. Correia,et al.  The energy approach to fatigue crack growth of S355 steel welded specimens subjected to bending , 2022, Theoretical and Applied Fracture Mechanics.

[7]  F. Berto,et al.  Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading , 2022, International Journal of Fatigue.

[8]  L. Romoli,et al.  Torsional-loaded notched specimen fatigue strength prediction based on mode I and mode III critical distances and fracture surface investigations with a 3D optical profilometer , 2022, International Journal of Fatigue.

[9]  Wei Zhang,et al.  A modified fatigue damage model considering loading sequence effect , 2022, International Journal of Damage Mechanics.

[10]  R. Branco,et al.  Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens , 2022, Engineering Failure Analysis.

[11]  P. Podulka Selection of Methods of Surface Texture Characterisation for Reduction of the Frequency-Based Errors in the Measurement and Data Analysis Processes , 2022, Sensors.

[12]  R. Branco,et al.  Fracture Surface Behavior of 34CrNiMo6 High-Strength Steel Bars with Blind Holes under Bending-Torsion Fatigue , 2021, Materials.

[13]  D. Benasciutti,et al.  Cyclic Plasticity and Low Cycle Fatigue of an AISI 316L Stainless Steel: Experimental Evaluation of Material Parameters for Durability Design , 2021, Materials.

[14]  M. Szala,et al.  Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6 , 2021, Materials.

[15]  R. Branco,et al.  Multiaxial fatigue behaviour of maraging steel produced by selective laser melting , 2021 .

[16]  A. Seweryn,et al.  Experimental Investigation and Modeling of Damage Accumulation of EN-AW 2024 Aluminum Alloy under Creep Condition at Elevated Temperature , 2021, Materials.

[17]  R. Branco,et al.  Three-dimensional fractographic analysis of total fracture areas in 6082 aluminium alloy specimens under fatigue bending with controlled damage degree , 2020 .

[18]  G. Stamoulis,et al.  Linear elastic analysis of the loading rate dependency of the fracture properties of structural adhesives in the mixed mode I+II plane , 2020 .

[19]  W. Macek Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue , 2019, Engineering Failure Analysis.

[20]  A. Seweryn,et al.  Monotonic behaviour of typical Al-Cu-Mg alloy pre-strained at elevated temperature , 2018, Journal of Theoretical and Applied Mechanics.

[21]  J. Szusta,et al.  Predicting the fatigue strength and life of 316L steel sinters of varying porosity for implants in a uniaxial loading state , 2018, Engineering Fracture Mechanics.

[22]  A. Seweryn,et al.  The Effect of Dynamic Recrystallization on Monotonic and Cyclic Behaviour of Al-Cu-Mg Alloy , 2018, Materials.

[23]  W. Macek,et al.  Energy‐based fatigue failure characteristics of materials under random bending loading in elastic‐plastic range , 2018 .

[24]  R. Leach,et al.  Industrial survey of ISO surface texture parameters , 2017 .

[25]  A. Seweryn,et al.  Fatigue life of EN AW-2024 alloy accounting for creep pre-deformation at elevated temperature , 2017 .

[26]  Reinhard Pippan,et al.  Experimental evidence of a common local mode II growth mechanism of fatigue cracks loaded in modes II, III and II + III in niobium and titanium , 2016 .

[27]  K. Nikbin,et al.  Experimental and numerical creep-fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time , 2015 .

[28]  Andrea Carpinteri,et al.  On the use of the Prismatic Hull method in a critical plane-based multiaxial fatigue criterion , 2014 .

[29]  Andrea Carpinteri,et al.  Lifetime estimation in the low/medium-cycle regime using the Carpinteri–Spagnoli multiaxial fatigue criterion , 2014 .

[30]  J. Jonas,et al.  Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions , 2014 .

[31]  Mácha,et al.  Energy criteria of multiaxial fatigue failure , 1999 .

[32]  J. Planès,et al.  Fractal Dimension of Fractured Surfaces: A Universal Value? , 1990 .

[33]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.

[34]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[35]  F. Berto,et al.  Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters , 2022, International Journal of Fatigue.

[36]  Grzegorz Glinka,et al.  Energy density approach to calculation of inelastic strain-stress near notches and cracks , 1985 .

[37]  O. Basquin The exponential law of endurance tests , 1910 .