Bias correction in extreme value statistics with index around zero

[1]  L. Peng,et al.  Bias reduction for endpoint estimation , 2011 .

[2]  Liang Peng,et al.  Bias reduction for high quantiles , 2010 .

[3]  Liang Peng,et al.  Does bias reduction with external estimator of second order parameter work for endpoint , 2009 .

[4]  C. Zhou,et al.  On spatial extremes: With application to a rainfall problem , 2008, 0807.4092.

[5]  Natalia M. Markovich Estimation of High Quantiles , 2007 .

[6]  M. Ivette Gomes,et al.  Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .

[7]  D. Pestana,et al.  A simple second-order reduced bias’ tail index estimator , 2007 .

[8]  M. Gomes,et al.  Reduced‐bias tail index estimation and the jackknife methodology , 2007 .

[9]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[10]  M. Ivette Gomes,et al.  IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .

[11]  Fernanda Figueiredo,et al.  Improved reduced-bias tail index and quantile estimators , 2008 .

[12]  Fernanda Figueiredo,et al.  Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .

[13]  J. Einmahl,et al.  Records in Athletics Through Extreme-Value Theory , 2006 .

[14]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[15]  M. Gomes,et al.  Revisiting the Role of the Jackknife Methodology in the Estimation of a Positive Tail Index , 2005 .

[16]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[17]  Frederico Caeiro,et al.  Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .

[18]  M. Gomes,et al.  Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .

[19]  Jan Beirlant,et al.  Estimating catastrophic quantile levels for heavy-tailed distributions , 2004 .

[20]  Liang Peng,et al.  Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .

[21]  Frederico Caeiro,et al.  A class of asymptotically unbiased semi-parametric estimators of the tail index , 2002 .

[22]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[23]  M. Gomes,et al.  Generalized jackknife semi-parametric estimators of the tail index. , 2002 .

[24]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

[25]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[26]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[27]  Liang Peng,et al.  Asymptotically unbiased estimators for the extreme-value index , 1998 .

[28]  Holger Drees,et al.  On Smooth Statistical Tail Functionals , 1998 .

[29]  Laurens de Haan,et al.  Sea and Wind: Multivariate Extremes at Work , 1998 .

[30]  U. Stadtmüller,et al.  Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[31]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[32]  Stuart Coles,et al.  Directional Modelling of Extreme Wind Speeds , 1994 .

[33]  L. de Haan,et al.  On the maximal life span of humans. , 1994, Mathematical population studies.

[34]  Laurens de Haan,et al.  On the estimation of high quantiles , 1993 .

[35]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[36]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[37]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[38]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[39]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[40]  Peter Hall,et al.  On Estimating the Endpoint of a Distribution , 1982 .

[41]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[42]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[43]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[44]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .