Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position–momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

[1]  D. Makarov Coupled harmonic oscillators and their quantum entanglement. , 2017, Physical review. E.

[2]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[3]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[5]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[6]  G. Hooft On the Quantum Structure of a Black Hole , 1985 .

[7]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[8]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[9]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[10]  Vladimir I. Novoderezhkin,et al.  Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion , 2014, Nature Physics.

[11]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[12]  H. Fan,et al.  Monogamy inequality in terms of negativity for three-qubit states , 2007, quant-ph/0702127.

[13]  Joseph H. Eberly,et al.  Measure of electron-electron correlation in atomic physics , 1994 .

[14]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[15]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[16]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[17]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[18]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[19]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[20]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[21]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[22]  Supriyo Ghosh,et al.  Entanglement dynamics following a sudden quench: An exact solution , 2017, 1709.02202.

[23]  W. Marsden I and J , 2012 .

[24]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[25]  M. A. Lohe Exact time dependence of solutions to the time-dependent Schrödinger equation , 2009 .

[26]  P. Knight,et al.  Entangled quantum systems and the Schmidt decomposition , 1995 .

[27]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[28]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[29]  F. Fillaux,et al.  Incoherent elastic-neutron-scattering study of the vibrational dynamics and spin-related symmetry of protons in the KHCO 3 crystal , 1999 .

[30]  Sergey N. Solodukhin,et al.  Entanglement Entropy of Black Holes , 2011, Living reviews in relativity.

[31]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .

[32]  Mario Pivk,et al.  Applied Quantum Cryptography , 2010 .

[33]  Edmund Pinney,et al.  The nonlinear differential equation ”+()+⁻³=0 , 1950 .

[34]  F. Fillaux Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues , 2005 .

[35]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[36]  Jasper Knoester,et al.  Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. , 2014, Nature chemistry.

[37]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[38]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[39]  S. Hawking Breakdown of Predictability in Gravitational Collapse , 1976 .

[40]  D Campos,et al.  On the phase-space picture of quantum mechanics , 2003 .

[41]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.