Volume holographic pupils in ray, wave, statistical optics, and Wigner space

This thesis explores various aspects of the volume holographic pupils to better understand and implement multi–dimensional imaging. A full description and applications of volume holographic pupils are presented in ray, wave, statistical optics, and Wigner space. Volume holograms have both a shift variant nature and multiplex capability, which can efficiently extract specific information of multi–dimensional objects by engineering imaging kernels with shift variant point spread functions and using post–processing. Based on the k–sphere formulation, an efficient computation method of analyzing volume diffraction is developed. It is integrated with the ray tracing software ZEMAXr whose built–in analysis and optimization features provide a great versatility for analysis, design, and optimization of novel volume holographic imaging systems. For a plane wave reference hologram, the shape of the Bragg diffraction image is analyzed in detail, where the shape is a distorted ellipse. The wave optics formulation of volume diffraction is revisited and further developed into statistical optics. The partially coherent response of a volume holographic imaging system is derived. Based on spatial coherence measurements, new passive binary depth detection is proposed, which is a special case of multi–dimensional imaging. Spatially incoherent two objects at two distinct depths are discriminated: focused objects in the foreground and defocused objects in the background. The passive detection is demonstrated for featureless uniform objects under quasi–monochromatic light by measuring mutual intensity with a volume holographic imager. By exploiting cross spectral density measurement, the passive binary depth detection is also demonstrated under white light illumination. Finally, the Wigner distribution function for volume holographic pupils is introduced. The space–spatial frequency characteristics of volume holograms are analyzed with linear systems approach. Wigner representations of two volume holograms are examined: plane and spherical wave reference holograms. Then, various axial imaging systems, which measure the depth of objects from intensity images, are explored by the Wigner analysis. Two important conditions for axial imaging are established:

[1]  J. Campbell Introduction to remote sensing , 1987 .

[2]  Jorge Ojeda-Castaneda,et al.  Irradiance at Fresnel planes of a phase grating , 1992 .

[3]  Demetri Psaltis,et al.  Real-time spectral imaging in three spatial dimensions. , 2002, Optics letters.

[4]  G. Barbastathis,et al.  N -ocular volume holographic imaging , 2003 .

[5]  Liren Liu,et al.  Analysis of optical systems with extended depth of field using the Wigner distribution function. , 2006, Applied optics.

[6]  Brian Curless,et al.  Overview of Active Vision Techniques , 2000 .

[7]  Double Wigner distribution function of a first-order optical system with a hard-edge aperture. , 2008, Applied optics.

[8]  P. Hanrahan,et al.  Light Field Photography with a Hand-held Plenoptic Camera , 2005 .

[9]  Ramesh Raskar,et al.  Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing , 2007, SIGGRAPH 2007.

[10]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[11]  A. Marathay,et al.  Young’s interference fringes with finite-sized sampling apertures , 1984 .

[12]  J. Goodman Introduction to Fourier optics , 1969 .

[13]  Wenyang Sun,et al.  Rainbow volume holographic imaging , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[14]  Bahram Javidi,et al.  Sampling in the light of Wigner distribution. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Mj Martin Bastiaans Application of the Wigner distribution function to partially coherent light , 1986 .

[16]  Daniel Lawrence Marks Four-Dimensional Coherence Sensing , 2001 .

[17]  George Barbastathis,et al.  Volume Holographic Multiplexing Methods , 2000 .

[18]  Se Baek Oh,et al.  Simulation and optimization of volume holographic imaging systems in Zemax. , 2008, Optics express.

[19]  C. Kittel Introduction to solid state physics , 1954 .

[20]  Demetri Psaltis Holographic memories , 1996, International Commission for Optics.

[21]  G. Barbastathis,et al.  Volume holographic telescope. , 2002 .

[22]  Mj Martin Bastiaans A Frequency-domain Treatment of Partial Coherence , 1977 .

[23]  Laszlo Solymar,et al.  Analysis of volume holographic cylindrical lenses , 1982 .

[24]  D. Brady,et al.  Spherical beam holograms for spectroscopic applications: Modeling and implementation , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[25]  Jonathan M Watson Evaluation of spatial-spectral filtering in non-paraxial volume holographic imaging systems , 2008 .

[26]  G. Barbastathis,et al.  Hyper-spectral imaging with volume holographic lenses , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[27]  Edward R. Dowski,et al.  A New Paradigm for Imaging Systems , 2002, PICS.

[28]  George Barbastathis Imaging Properties of Three-Dimensional Pupils , 2005 .

[29]  Z. Zalevsky,et al.  Generalized Wigner function for the analysis of superresolution systems. , 1998, Applied optics.

[30]  B. Javidi,et al.  Analysis of 3-D integral imaging displays using the Wigner distribution , 2006, Journal of Display Technology.

[31]  Wojciech Matusik,et al.  Natural video matting using camera arrays , 2006, SIGGRAPH '06.

[32]  F. Zernike The concept of degree of coherence and its application to optical problems , 1938 .

[33]  Subhasis Chaudhuri,et al.  Depth From Defocus: A Real Aperture Imaging Approach , 1999, Springer New York.

[34]  Francis Arthur Jenkins,et al.  Fundamentals of Optics , 1976 .

[35]  S. Paddock,et al.  Confocal laser scanning microscopy. , 1999, BioTechniques.

[36]  Ramesh Raskar,et al.  Computational photography , 2005, Eurographics.

[37]  William H. Carter,et al.  Angular distribution of radiant intensity from sources of different degrees of spatial coherence , 1975 .

[38]  J Rosen,et al.  Three-dimensional imaging of random radiation sources. , 1996, Optics letters.

[39]  Bahram Javidi,et al.  Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms. , 2006, Applied optics.

[40]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[41]  B. Thompson,et al.  Finite-aperture effects in the measurement of the degree of coherence , 1984 .

[42]  Demetri Psaltis,et al.  Holographic Data Storage , 1998, Computer.

[43]  W. H. Carter,et al.  A radiometric generalization of the Van Cittert-Zernike theorem for fields generated by sources of arbitrary state of coherence☆ , 1976 .

[44]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[45]  D. Psaltis,et al.  Volume holographic interconnections with maximal capacity and minimal cross talk , 1989 .

[46]  J Rosen,et al.  Reconstruction of longitudinal distributed incoherent sources. , 1996, Optics letters.

[47]  Brian H. Marcus,et al.  Holographic data storage technology , 2000, IBM J. Res. Dev..

[48]  David J. Brady,et al.  Multidimensional tomographic imaging using volume holography , 1999, Proc. IEEE.

[49]  James F. Blinn,et al.  Blue screen matting , 1996, SIGGRAPH.

[50]  G. Barbastathis,et al.  Broadband volume holographic imaging. , 2004, Applied optics.

[51]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[52]  Yuan Luo,et al.  Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system. , 2008, Optics letters.

[53]  R. R. A. Syms,et al.  Practical volume holography , 1990 .

[54]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[55]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[56]  Arnab Sinha,et al.  Volume holographic imaging for surface metrology at long working distances. , 2003 .

[57]  L. Mandel,et al.  Spectral coherence and the concept of cross-spectral purity , 1976 .

[58]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[59]  Mj Martin Bastiaans,et al.  Wigner distribution function of a circular aperture , 1996 .

[60]  W. Freeman,et al.  Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections , 2008, ECCV.

[61]  Peter Lawrence,et al.  An Investigation of Methods for Determining Depth from Focus , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[63]  Wenyang Sun,et al.  Volume holographic imaging in transmission geometry. , 2004, Applied optics.

[64]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[65]  Demetri Psaltis,et al.  Volume holographic hyperspectral imaging. , 2004, Applied optics.

[66]  Pietro Perona,et al.  3D Photography Using Shadows in Dual-Space Geometry , 1999, International Journal of Computer Vision.

[67]  W T Cathey,et al.  Single-lens single-image incoherent passive-ranging systems. , 1994, Applied optics.

[68]  Emmett N. Leith,et al.  Holographic data storage in three-dimensional media. , 1966, Applied optics.

[69]  R. M. Sillitto,et al.  Introduction to Classical and Modern Optics , 1986 .

[70]  Edward H. Adelson,et al.  Single Lens Stereo with a Plenoptic Camera , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  P. H. Cittert,et al.  Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene , 1934 .

[72]  Kazuyoshi Itoh,et al.  Retrieval of the cross-spectral density propagating in free space , 1999 .

[73]  D J Brady,et al.  Confocal microscopy with a volume holographic filter. , 1999, Optics letters.

[74]  Mj Martin Bastiaans Application of the Wigner distribution function in optics , 1997 .

[75]  Vidi Saptari,et al.  Fourier-Transform Spectroscopy Instrumentation Engineering , 2003 .

[76]  Joseph Rosen,et al.  General theorem of spatial coherence: application to three-dimensional imaging , 1996 .

[77]  L Hesselink,et al.  Volume Holographic Storage and Retrieval of Digital Data , 1994, Science.

[78]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[79]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[80]  D. Brady,et al.  Analysis of slitless holographic spectrometers implemented by spherical beam volume holograms. , 2006, Applied Optics.

[81]  D. Brady,et al.  Three-dimensional coherence imaging in the Fresnel domain. , 1999, Applied optics.