Face recognition from video: a CONDENSATION approach

The aim of this work is to investigate how to exploit the temporal information in a video sequence for the task of face recognition. Following the approach in (Li and Chellappa, 2000), we propose a probabilistic model parameterized by a tracking state vector and a recognizing identity variable, simultaneously characterizing the kinematics and identity of humans. We then invoke a CONDENSATION (Isard and Blake, 1996) approach to provide a numerical solution to the model. Once the joint posterior distribution of the state vector and the identity variable is estimated, we marginalize it over the state vector to yield a robust estimate of the posterior distribution of the identity variable. Due to the propagation of identity and dynamics, a degeneracy in the posterior distribution of the identity variable is achieved to give improved recognition. This evolving behavior is characterized using changes in entropy. The effectiveness of this approach is illustrated using experimental results on low-resolution video data.

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[3]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[4]  Michael J. Black,et al.  A probabilistic frameworkfor matching temporal trajectories , 1998, ICCV 1998.

[5]  Rama Chellappa,et al.  A robust algorithm for probabilistic human recognition from video , 2002, Object recognition supported by user interaction for service robots.

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[8]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[9]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[10]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[11]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[12]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[13]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[14]  Shaogang Gong,et al.  Constructing structures of facial identities on the view sphere using kernal discriminant analysis , 2001 .

[15]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[16]  Tanzeem Choudhury,et al.  Multimodal person recognition using unconstrained audio and video , 1998 .

[17]  Rama Chellappa,et al.  Simultaneous tracking and verification via sequential posterior estimation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).