Control Strategies for the Fokker-Planck Equation

Using a projection-based decoupling of the Fokker-Planck equation, control strategies that allow to speed up the convergence to the stationary distribution are investigated. By means of an operator theoretic framework for a bilinear control system, two different feedback control laws are proposed. Projected Riccati and Lyapunov equations are derived and properties of the associated solutions are given. The well-posedness of the closed loop systems is shown and local and global stabilization results, respectively, are obtained. An essential tool in the construction of the controls is the choice of appropriate control shape functions. Results for a two dimensional double well potential illustrate the theoretical findings in a numerical setup.

[1]  Michel Chipot,et al.  Elements of Nonlinear Analysis , 2000 .

[2]  B. Matkowsky,et al.  Eigenvalues of the Fokker–Planck Operator and the Approach to Equilibrium for Diffusions in Potential Fields , 1981 .

[3]  Jean-Pierre Raymond,et al.  Feedback Boundary Stabilization of the Two-Dimensional Navier--Stokes Equations , 2006, SIAM J. Control. Optim..

[4]  Irena Lasiecka,et al.  Control Theory for Partial Differential Equations: Contents , 2000 .

[5]  Wen Huang,et al.  Steady States of Fokker–Planck Equations: I. Existence , 2015 .

[6]  P. Lions,et al.  Existence and Uniqueness of Solutions to Fokker–Planck Type Equations with Irregular Coefficients , 2008 .

[7]  Carsten Hartmann,et al.  Balanced model reduction of partially observed Langevin equations: an averaging principle , 2011 .

[8]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[9]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[10]  Giovanni Volpe,et al.  Optical Tweezers: Principles and Applications , 2016 .

[11]  Hiroki Tanabe,et al.  Equations of evolution , 1979 .

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[14]  Takéo Takahashi,et al.  Feedback stabilization of a fluid--rigid body interaction system , 2014, Advances in Differential Equations.

[15]  Irena Lasiecka,et al.  Tangential boundary stabilization of Navier-Stokes equations , 2006 .

[16]  Alfio Borzì,et al.  A Fokker-Planck control framework for multidimensional stochastic processes , 2013, J. Comput. Appl. Math..

[17]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[18]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[19]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[20]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[21]  J. Gorman,et al.  Feedback Control of MEMS to Atoms , 2012 .

[22]  Jean-Pierre Raymond,et al.  HINFINITY Feedback Boundary Stabilization of the Two-Dimensional Navier-Stokes Equations , 2011, SIAM J. Control. Optim..

[23]  R. Triggiani On the stabilizability problem in Banach space , 1975 .

[24]  Alexander Y. Khapalov,et al.  Controllability of Partial Differential Equations Governed by Multiplicative Controls , 2010 .

[25]  Wen Huang,et al.  Steady States of Fokker–Planck Equations: II. Non-existence , 2015 .

[26]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation , 2000 .

[27]  G. Burton Sobolev Spaces , 2013 .

[28]  Carsten Hartmann,et al.  Balanced Averaging of Bilinear Systems with Applications to Stochastic Control , 2013, SIAM J. Control. Optim..

[29]  John M. Ball,et al.  Feedback stabilization of distributed semilinear control systems , 1979 .

[30]  Jean-Pierre Raymond,et al.  Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers , 2010 .

[31]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[32]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[33]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems, 2nd Edition , 2007, Systems and control.

[34]  Jean-Pierre Raymond,et al.  Nonlinear feedback stabilization of a two-dimensional Burgers equation , 2010 .

[35]  H. Risken Fokker-Planck Equation , 1996 .

[36]  Jason J. Gorman,et al.  Feedback Control of Optically Trapped Particles , 2012 .

[37]  G. M. Troianiello,et al.  Elliptic Differential Equations and Obstacle Problems , 1987 .

[38]  Tosio Kato Perturbation theory for linear operators , 1966 .

[39]  V. Bogachev,et al.  Fokker–Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces , 2009 .