A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38δ

We have developed a method of general application for identifying putative substrates of protein kinases in cell extracts. Using this procedure, we identified the physiological substrates of several mitogen‐activated protein kinase kinases and an authentic substrate of stress‐activated protein kinase (SAPK) 2a/p38. A 120 kDa protein was detected in skeletal muscle extracts that was phosphorylated rapidly by SAPK4/p38δ, but poorly by SAPK2/p38, SAPK3/p38γ, SAPK1/JNK or extracellular signal‐regulated kinase 2 (ERK2). It was purified and identified as eukaryotic elongation factor 2 kinase (eEF2K). SAPK4/p38δ phosphorylated eEF2K at Ser359 in vitro, causing its inactivation. eEF2K became phosphorylated at Ser359 and its substrate eEF2 became dephosphorylated (activated) when KB cells were exposed to anisomycin, an agonist that activates all SAPKs, including SAPK4/p38δ. The anisomycin‐induced phosphorylation of Ser359 was unaffected by SB 203580, U0126 or rapamycin, and was prevented by overexpression of a catalytically inactive SAPK4/p38δ mutant, suggesting that SAPK4/p38δ may mediate the inhibition of eEF2K by this stress. The phosphorylation of eEF2K at Ser359 was also induced by insulin‐like growth factor‐1. However, this was blocked by rapamycin, indicating that Ser359 is targeted by at least two signalling pathways.

[1]  Philip R. Cohen,et al.  SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin‐1 , 1995, FEBS letters.

[2]  P. Cohen,et al.  MAPKAP kinase‐2; a novel protein kinase activated by mitogen‐activated protein kinase. , 1992, The EMBO journal.

[3]  Philip R. Cohen,et al.  Activation of stress‐activated protein kinase‐3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38) , 1997, The EMBO journal.

[4]  A. Nairn,et al.  Identification of calmodulin-dependent protein kinase III and its major Mr 100,000 substrate in mammalian tissues. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Cohen,et al.  Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. , 1998, Chemistry & biology.

[6]  Tony Hunter,et al.  MNK1, a new MAP kinase‐activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates , 1997, The EMBO journal.

[7]  Kigoshi Toshikazu,et al.  Elongation factor 2 as the major substrate for Ca2+/calmodulin-dependent protein kinase in rat adrenal glomerulosa cells. , 1989 .

[8]  M Wiedmann,et al.  Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  C. Proud,et al.  Regulation of translation elongation factor‐2 by insulin via a rapamycin‐sensitive signalling pathway. , 1996, The EMBO journal.

[10]  K. Shokat,et al.  Engineering Src family protein kinases with unnatural nucleotide specificity. , 1998, Chemistry & biology.

[11]  John C. Lee,et al.  Identification of Mitogen-activated Protein (MAP) Kinase-activated Protein Kinase-3, a Novel Substrate of CSBP p38 MAP Kinase (*) , 1996, The Journal of Biological Chemistry.

[12]  P. Cohen,et al.  Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress‐ and cytokine‐stimulated monocytes and epithelial cells. , 1996, The EMBO journal.

[13]  Michel Morange,et al.  A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins , 1994, Cell.

[14]  Philip R. Cohen,et al.  Activation of the novel stress‐activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases , 1997, The EMBO journal.

[15]  K. Shokat,et al.  Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Karin,et al.  Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. , 1993, Genes & development.

[17]  Yong Jiang,et al.  PRAK, a novel protein kinase regulated by the p38 MAP kinase , 1998, The EMBO journal.

[18]  A. Casamayor,et al.  PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 , 1999, Current Biology.

[19]  P. Cohen,et al.  Specificity and mechanism of action of some commonly used protein kinase inhibitors , 2000 .

[20]  C. Proud,et al.  Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase , 2001, The EMBO journal.

[21]  N. Morrice,et al.  A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules , 1998, Current Biology.