Tests for Multinormality with Application to Time Series

Making use of a characterization of multivariate normality by Hermitian polynomials, we propose a multivariate normality test. The approach is then applied to time series analysis by constructing a test for Gaussianity of a stationary univariate series. Simulation study shows that the proposed test has reasonable power and outperforms other tests available in the literature when the innovation series of the time series is symmetric, but non-Gaussian.

[1]  Norbert Henze,et al.  Extreme smoothing and testing for multivariate normality , 1997 .

[2]  Norbert Henze,et al.  A New Approach to the BHEP Tests for Multivariate Normality , 1997 .

[3]  Kai-Tai Fang,et al.  A test for multivariate normality based on sample entropy and projection pursuit , 1995 .

[4]  Jorge Luis Romeu,et al.  A comparative study of goodness-of-fit tests for multivariate normality , 1993 .

[5]  James A. Koziol,et al.  Probability plots for assessing multivariate normality , 1993 .

[6]  A. Bowman,et al.  Adaptive Smoothing and Density-Based Tests of Multivariate Normality , 1993 .

[7]  Ludwig Baringhaus,et al.  Limit Distributions for Mardia's Measure of Multivariate Skewness , 1992 .

[8]  Deo Kumar Srivastava,et al.  A test of p-variate normality , 1992 .

[9]  Stephen Warwick Looney,et al.  A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis , 1992 .

[10]  Sándor Csörgő,et al.  Consistency of some tests for multivariate normality , 1989 .

[11]  N. Henze,et al.  A consistent test for multivariate normality based on the empirical characteristic function , 1988 .

[12]  T. W. Epps Testing That a Stationary Time Series is Gaussian , 1987 .

[13]  S. Csőrgő,et al.  Testing for Normality in Arbitrary Dimension , 1986 .

[14]  T. W. Epps,et al.  A test for normality based on the empirical characteristic function , 1983 .

[15]  D. M. Keenan,et al.  Limiting Behavior of Functionals of the Sample Spectral Distribution , 1983 .

[16]  M. Hinich Testing for Gaussianity and Linearity of a Stationary Time Series. , 1982 .

[17]  L. E. Clarke,et al.  Probability and Measure , 1980 .

[18]  T. Rao,et al.  A TEST FOR LINEARITY OF STATIONARY TIME SERIES , 1980 .

[19]  David R. Cox,et al.  Testing multivariate normality , 1978 .

[20]  K. Mardia Assessment of multinormality and the robustness of Hotelling's T^2 test , 1975 .

[21]  A. Afifi,et al.  On Tests for Multivariate Normality , 1973 .

[22]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[23]  M. Healy,et al.  Multivariate Normal Plotting , 1968 .

[24]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[25]  C. Versluis Comparison of tests for bivariate normality with unknown parameters by transformation to an univariate statistic , 1996 .

[26]  K. Naito On weighting the studentized empirical characteristic function for testing normality , 1996 .

[27]  Deo Kumar Srivastava,et al.  Some p-variate adaptations of the shapiro-wilk test of normality , 1995 .

[28]  Norbert Henze,et al.  On Mardia’s kurtosis test for multivariate normality , 1994 .

[29]  Sung K. Ahn F-probability plot and its application to multivariate normality , 1992 .

[30]  A. Öztürk,et al.  A new method for assessing multivariate normality with graphical applications , 1992 .

[31]  Norbert Henze,et al.  A class of invariant consistent tests for multivariate normality , 1990 .

[32]  Clive W. J. Granger,et al.  Forecasting transformed series , 1976 .

[33]  J. L. Warner,et al.  Methods for Assessing Multivariate Normality , 1973 .