Statistical Signatures of Nanoflare Activity. II. A Nanoflare Explanation for Periodic Brightenings in Flare Stars Observed by NGTS

Several studies have documented periodic and quasi-periodic signals from the time series of dMe flare stars and other stellar sources. Such periodic signals, observed within quiescent phases (i.e., devoid of larger-scale microflare or flare activity), range in a period from 1 to 1000 s and hence have been tentatively linked to ubiquitous p-mode oscillations generated in the convective layers of the star. As such, most interpretations for the observed periodicities have been framed in terms of magnetohydrodynamic wave behavior. However, we propose that a series of continuous nanoflares, based upon a power-law distribution, can provide a similar periodic signal in the associated time series. Adapting previous statistical analyses of solar nanoflare signals, we find the first statistical evidence for stellar nanoflare signals embedded within the noise envelope of M-type stellar lightcurves. Employing data collected by the Next Generation Transit Survey (NGTS), we find evidence for stellar nanoflare activity demonstrating a flaring power-law index of 3.25 ± 0.20, alongside a decay timescale of 200 ± 100 s. We also find that synthetic time series, consistent with the observations of dMe flare star lightcurves, are capable of producing quasi-periodic signals in the same frequency range as p-mode signals, despite being purely composed of impulsive signatures. Phenomena traditionally considered a consequence of wave behavior may be described by a number of high-frequency but discrete nanoflare energy events. This new physical interpretation presents a novel diagnostic capability, by linking observed periodic signals to given nanoflare model conditions.

[1]  A. Schwope,et al.  The XMM-Newton serendipitous survey IX. The fourth XMM-Newton serendipitous source catalogue , 2020, 2007.02899.

[2]  S. Hodgkin,et al.  NGTS clusters survey – II. White-light flares from the youngest stars in Orion , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  A. Mohan,et al.  First Radio Evidence for Impulsive Heating Contribution to the Quiet Solar Corona , 2020, The Astrophysical Journal.

[4]  D. Christian,et al.  A chromospheric resonance cavity in a sunspot mapped with seismology , 2020, Nature Astronomy.

[5]  D. Mullan,et al.  A Transition of Dynamo Modes in M Dwarfs: Narrowing Down the Spectral Range Where the Transition Occurs , 2020, The Astrophysical Journal.

[6]  S. Fleming,et al.  Short-duration Stellar Flares in GALEX Data , 2019, The Astrophysical Journal.

[7]  D. Bayliss,et al.  NGTS-7Ab: an ultrashort-period brown dwarf transiting a tidally locked and active M dwarf , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  M. Aschwanden Self-organized Criticality in Solar and Stellar Flares: Are Extreme Events Scale-free? , 2019, The Astrophysical Journal.

[9]  D. Bayliss,et al.  Detection of a giant white-light flare on an L2.5 dwarf with the Next Generation Transit Survey , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[10]  Keivan G. Stassun,et al.  Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs , 2019, The Astronomical Journal.

[11]  D. Christian,et al.  Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter-space Exploration , 2018, The Astrophysical Journal.

[12]  J. Lothringer,et al.  Extreme-ultraviolet Radiation from A-stars: Implications for Ultra-hot Jupiters , 2018, The Astrophysical Journal.

[13]  S. Udry,et al.  Detection of a giant flare displaying quasi-periodic pulsations from a pre-main-sequence M star by the Next Generation Transit Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  L. Girardi,et al.  A Synthetic Sample of Short-cadence Solar-like Oscillators for TESS , 2018, The Astrophysical Journal Supplement Series.

[15]  J. Allred,et al.  Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations , 2018, The Astrophysical Journal.

[16]  David J Armstrong,et al.  Ground-based detection of G star superflares with NGTS , 2018, 1804.03377.

[17]  V. Nakariakov,et al.  Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares , 2018, 1802.04180.

[18]  X. Fang,et al.  The Flaring Activity of M Dwarfs in the Kepler Field , 2017 .

[19]  R. Erdélyi,et al.  The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere , 2017, 1708.04835.

[20]  J. Klimchuk,et al.  A Survey of Nanoflare Properties in Active Regions Observed with the Solar Dynamics Observatory , 2017 .

[21]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[22]  T. White,et al.  Do A-type stars flare? , 2016, 1612.04575.

[23]  J. Drake,et al.  Solar-type dynamo behaviour in fully convective stars without a tachocline , 2016, Nature.

[24]  J. Klimchuk,et al.  SIGNATURES OF STEADY HEATING IN TIME LAG ANALYSIS OF CORONAL EMISSION , 2016, 1607.02008.

[25]  F. Reale PLASMA SLOSHING IN PULSE-HEATED SOLAR AND STELLAR CORONAL LOOPS , 2016, 1607.01329.

[26]  P. Kerry,et al.  HiPERCAM: a high-speed quintuple-beam CCD camera for the study of rapid variability in the universe , 2016, Astronomical Telescopes + Instrumentation.

[27]  A. Rau,et al.  Optical microflaring on the nearby flare star binary UV Ceti , 2016 .

[28]  P. Amado,et al.  Search for pulsations in M dwarfs in the Kepler short-cadence data base , 2016 .

[29]  L. Hadid,et al.  On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence , 2016, 1611.00199.

[30]  V. S. Dhillon,et al.  Atmospheric scintillation in astronomical photometry , 2015, 1506.06921.

[31]  M. Gudel,et al.  The Coronal Temperatures of Low-Mass Main-Sequence Stars , 2015, 1505.00643.

[32]  Kazunari Shibata,et al.  Statistical properties of superflares on solar-type stars based on 1-min cadence data , 2015, Earth, Planets and Space.

[33]  M. Aschwanden,et al.  GLOBAL ENERGETICS OF SOLAR FLARES. II. THERMAL ENERGIES , 2015, 1502.05941.

[34]  J. Klimchuk,et al.  THE TRANSITION REGION RESPONSE TO A CORONAL NANOFLARE: FORWARD MODELING AND OBSERVATIONS IN SDO/AIA , 2015 .

[35]  M. Aschwanden,et al.  GLOBAL ENERGETICS OF SOLAR FLARES. I. MAGNETIC ENERGIES , 2014, 1410.8013.

[36]  P. Keys,et al.  NANOFLARE ACTIVITY IN THE SOLAR CHROMOSPHERE , 2014, 1409.6726.

[37]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES , 2013, 1308.1480.

[38]  J. Klimchuk,et al.  MODELING THE LINE-OF-SIGHT INTEGRATED EMISSION IN THE CORONA: IMPLICATIONS FOR CORONAL HEATING , 2013, 1304.5439.

[39]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[40]  Simon Vaughan,et al.  Random time series in astronomy , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  J. Klimchuk,et al.  DIAGNOSING THE TIME-DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. I. LOW-FREQUENCY NANOFLARES , 2012, 1209.0737.

[42]  L. Balona Kepler observations of flaring in A-F type stars , 2012 .

[43]  Markus J. Aschwanden,et al.  AUTOMATED SOLAR FLARE STATISTICS IN SOFT X-RAYS OVER 37 YEARS OF GOES OBSERVATIONS: THE INVARIANCE OF SELF-ORGANIZED CRITICALITY DURING THREE SOLAR CYCLES , 2012, 1205.6712.

[44]  G. Handler Asteroseismology , 2012, 1205.6407.

[45]  Takashi Nagao,et al.  Superflares on solar-type stars , 2012, Nature.

[46]  NASA's Goddard Space Flight Center,et al.  EVIDENCE FOR WIDESPREAD COOLING IN AN ACTIVE REGION OBSERVED WITH THE SDO ATMOSPHERIC IMAGING ASSEMBLY , 2012, 1202.4001.

[47]  J. Klimchuk,et al.  PATTERNS OF NANOFLARE STORM HEATING EXHIBITED BY AN ACTIVE REGION OBSERVED WITH SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY , 2011 .

[48]  S. Tsuneta,et al.  WIDESPREAD NANOFLARE VARIABILITY DETECTED WITH HINODE/X-RAY TELESCOPE IN A SOLAR ACTIVE REGION , 2011, 1105.2506.

[49]  J. Podesta On the energy cascade rate of solar wind turbulence in high cross helicity flows , 2011 .

[50]  M. Kretzschmar,et al.  The Sun as a star: observations of white-light flares , 2011, 1103.3125.

[51]  R. Sych,et al.  Oscillatory processes in solar flares , 2010, 1010.0063.

[52]  A. Benz,et al.  Physical Processes in Magnetically Driven Flares on the Sun, Stars, and Young Stellar Objects , 2010 .

[53]  L. Walkowicz,et al.  WHITE-LIGHT FLARES ON COOL STARS IN THE KEPLER QUARTER 1 DATA , 2010, 1008.0853.

[54]  G. Micela,et al.  A DETAILED STUDY OF THE RISE PHASE OF A LONG DURATION X-RAY FLARE IN THE YOUNG STAR TWA 11B , 2010, 1002.1013.

[55]  S. Frank The common patterns of nature , 2009, Journal of evolutionary biology.

[56]  R. Walsh,et al.  EXTREME-ULTRAVIOLET OBSERVATIONAL CONSEQUENCES OF THE SPATIAL LOCALIZATION OF NANOFLARE HEATING WITHIN A MULTISTRANDED ATMOSPHERIC LOOP , 2009, 0905.0930.

[57]  M. Holman,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2009 .

[58]  G. Vekstein Probing nanoflares with observed fluctuations of the coronal EUV emission , 2009 .

[59]  S. Tsuneta,et al.  Observational Appearance of Nanoflares with SXT and TRACE , 2008 .

[60]  V. Pipin,et al.  Stellar dynamos with ${\Omega} \times J$ effect , 2008, 0811.4225.

[61]  D. Sasselov,et al.  The Nature of p-Modes and Granulation in Procyon: New MOST Photometry and New Yale Convection Models , 2008 .

[62]  T. Bedding,et al.  EXCITATION AND DAMPING OF p-MODE OSCILLATIONS OF α Cen B , 2008, 0810.5022.

[63]  R. Walsh,et al.  Hydrodynamic Simulation of a Nanoflare-heated Multistrand Solar Atmospheric Loop , 2008, 0804.3108.

[64]  M. Browning Simulations of Dynamo Action in Fully Convective Stars , 2007, 0712.1603.

[65]  J. G. Doyle,et al.  GALEX high time-resolution ultraviolet observations of dMe flare events , 2006, astro-ph/0608254.

[66]  Greg Kopp,et al.  Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares , 2005 .

[67]  E. Verwichte,et al.  Coronal Waves and Oscillations , 2005, Proceedings of the International Astronomical Union.

[68]  M. Güdel X-ray astronomy of stellar coronae , 2004, astro-ph/0406661.

[69]  J. Kastner,et al.  ROSAT X-Ray Spectral Properties of Nearby Young Associations: TW Hydrae, Tucana-Horologium, and the β Pictoris Moving Group , 2002, astro-ph/0208589.

[70]  V. Kashyap,et al.  Flare Heating in Stellar Coronae , 2002, astro-ph/0208546.

[71]  A. Emslie,et al.  Energetics of Explosive Events Observed with SUMER , 2002 .

[72]  S. Krucker,et al.  Energy Distribution of Microevents in the Quiet Solar Corona , 2001, astro-ph/0109027.

[73]  P. Cargill,et al.  Spectroscopic Diagnostics of Nanoflare-heated Loops , 2001 .

[74]  A. Brandenburg,et al.  Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Harry P. Warren,et al.  Time Variability of the “Quiet” Sun Observed with TRACE. II. Physical Parameters, Temperature Evolution, and Energetics of Extreme-Ultraviolet Nanoflares , 2000 .

[76]  P. Jupp,et al.  Statistical Analysis of the Energy Distribution of Nanoflares in the Quiet Sun , 2000 .

[77]  D. Falla,et al.  The nanoflare model and stellar quiescent radio emission , 1999 .

[78]  Carolus J. Schrijver,et al.  Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer , 1999 .

[79]  E. Guinan,et al.  Implications from Extreme-Ultraviolet Observations for Coronal Heating of Active Stars , 1999 .

[80]  Säm Krucker,et al.  Energy Distribution of Heating Processes in the Quiet Solar Corona , 1998 .

[81]  M. Güdel Are Coronae of Magnetically Active Stars Heated by Flares? , 1997, astro-ph/0312405.

[82]  J. Percival,et al.  A Search for Microflaring Activity on dMe Flare Stars. II. Observations of YZ Canis Minoris , 1995 .

[83]  T. Bedding,et al.  Solar-like oscillations in eta Boo , 1994, astro-ph/9411016.

[84]  I. Roxburgh,et al.  On the generation of the large-scale and turbulent magnetic fields in solar-type stars , 1993 .

[85]  E. Lu,et al.  Avalanches and the Distribution of Solar Flares , 1991 .

[86]  H. Hudson Solar flares, microflares, nanoflares, and coronal heating , 1991 .

[87]  D. Neidig The importance of solar white-light flares , 1989 .

[88]  E. Parker Nanoflares and the solar X-ray corona , 1988 .

[89]  C. J. Butler,et al.  Coordinated Exosat and spectroscopic observations of flare stars and coronal heating , 1986, Nature.

[90]  P. Sturrock,et al.  Evaporative cooling of flare plasma , 1978 .

[91]  Peter D. Welch,et al.  A Direct Digital Method of Power Spectrum Estimation , 1961, IBM J. Res. Dev..

[92]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[93]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[94]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[95]  V. Kashyap,et al.  Are Coronae of Magnetically Active Stars Heated by Flares? II. Extreme Ultraviolet and X-Ray Flare Statistics and the Differential Emission Measure Distribution , 2003 .

[96]  Suzanne L. Hawley,et al.  New light on dark stars : red dwarfs, low-mass stars, brown dwarfs , 2000 .

[97]  I. Reid,et al.  in New Light on Dark Stars , 2000 .

[98]  M. Aschwanden Do EUV Nanoflares Account for Coronal Heating? , 1999 .

[99]  T. Moffett,et al.  UV Ceti stars: statistical analysis of observational data. , 1976 .

[100]  R. Gershberg Flares of Red Dwarf Stars and Solar Activity , 1975 .