An extended lower bound on the number of (k)-edges to generalized configurations of points and the pseudolinear crossing number of Kn

Recently, Aichholzer, Garcia, Orden, and Ramos derived a remarkably improved lower bound for the number of (=

[1]  Edward R. Scheinerman,et al.  The Rectilinear Crossing Number of a Complete Graph and Sylvester's "Four Point Problem" of Geometri , 1994 .

[2]  Richard Pollack,et al.  On the Combinatorial Classification of Nondegenerate Configurations in the Plane , 1980, J. Comb. Theory, Ser. A.

[3]  Richard Pollack,et al.  Semispaces of Configurations, Cell Complexes of Arrangements , 1984, J. Comb. Theory, Ser. A.

[4]  Alina Beygelzimer,et al.  On halving line arrangements , 2002, Discret. Math..

[5]  Franz Aurenhammer,et al.  On the Crossing Number of Complete Graphs , 2002, SCG '02.

[6]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[8]  József Balogh,et al.  k-Sets, Convex Quadrilaterals, and the Rectilinear Crossing Number of Kn , 2006, Discret. Comput. Geom..

[9]  E. Welzl,et al.  Convex Quadrilaterals and k-Sets , 2003 .

[10]  József Balogh,et al.  The convex hull of every optimal pseudolinear drawing of Kn is a triangle , 2007, Australas. J Comb..

[11]  O. Aichholzer,et al.  On the Crossing Number of Complete Graphs , 2005, Computing.

[12]  Oswin Aichholzer,et al.  New Lower Bounds for the Number of (≤ k)-Edges and the Rectilinear Crossing Number of Kn , 2007, Discret. Comput. Geom..

[13]  Bernardo M. Ábrego,et al.  Geometric drawings of Kn with few crossings , 2007, J. Comb. Theory, Ser. A.

[14]  . Ábrego,et al.  On ( ≤ k ) – pseudoedges in generalized configurations and the pseudolinear crossing number of K n B , 2006 .

[15]  Jacob E. Goodman,et al.  Proof of a conjecture of Burr, Grünbaum, and Sloane , 1980, Discret. Math..

[16]  Herbert Edelsbrunner,et al.  Semispaces of Configurations , 1987 .

[17]  J. Pach Towards a Theory of Geometric Graphs , 2004 .

[18]  Bernardo M. Ábrego,et al.  A Lower Bound for the Rectilinear Crossing Number , 2005, Graphs Comb..