Unveiling the role of copper content in the crystal structure and phase stability of epitaxial Cu(In,Ga)S2 films on GaP/Si(001)

[1]  J. Larsen,et al.  Experimental and Theoretical Study of Stable and Metastable Phases in Sputtered CuInS2 , 2022, Advanced science.

[2]  E. Gautron,et al.  Epitaxial growth of CIGSe layers on GaP/Si(001) pseudo-substrate for tandem CIGSe/Si solar cells , 2021, Solar Energy Materials and Solar Cells.

[3]  G. Rignanese,et al.  Over 15% efficient wide-band-gap Cu(In,Ga)S2 solar cell: Suppressing bulk and interface recombination through composition engineering , 2021, Joule.

[4]  S. Siebentritt,et al.  Carrier recombination mechanism and photovoltage deficit in 1.7-eV band gap near-stoichiometric Cu(In,Ga) S2 , 2021, Physical Review Materials.

[5]  E. Gautron,et al.  CIGS growth on a GaP/Si(001) platform: towards CIGS/Si tandem solar cells , 2021 .

[6]  Filipe Martinho,et al.  Challenges for the future of tandem photovoltaics on the path to terawatt levels: a technology review , 2021, 2102.10427.

[7]  B. Gault,et al.  On the chemistry of grain boundaries in CuInS2 films , 2020 .

[8]  F. Mezzadri,et al.  Metastable (CuAu-type) CuInS2 Phase: High-Pressure Synthesis and Structure Determination. , 2020, Inorganic chemistry.

[9]  Mowafak Al-Jassim,et al.  Optical and Structural Properties of High-Efficiency Epitaxial Cu(In,Ga)Se2 Grown on GaAs. , 2019, ACS applied materials & interfaces.

[10]  I. Parkin,et al.  Photoelectrochemical water oxidation of GaP1−xSbx with a direct band gap of 1.65 eV for full spectrum solar energy harvesting , 2019, Sustainable Energy & Fuels.

[11]  M. Lebedev,et al.  Modification of the p-GaP(001) work function by surface dipole bonds formed in sulfide solution , 2019 .

[12]  N. Barreau,et al.  Chemical crystallographic investigation on Cu2S-In2S3-Ga2S3 ternary system , 2018, Thin Solid Films.

[13]  F. Dimroth,et al.  Exploring new convergences between PV technologies for high efficiency tandem solar cells : Wide band gap epitaxial CIGS top cells on silicon bottom cells with III-V intermediate layers , 2018 .

[14]  Shigeru Niki,et al.  Single-crystal Cu(In,Ga)Se2 solar cells grown on GaAs substrates , 2018, Applied Physics Express.

[15]  J. Jeong,et al.  Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme , 2017, Scientific Reports.

[16]  H. Atwater,et al.  Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass , 2017, Scientific Reports.

[17]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[18]  L. Largeau,et al.  Abrupt GaP/Si hetero-interface using bistepped Si buffer , 2015 .

[19]  Olivier Durand,et al.  Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup , 2015, Journal of applied crystallography.

[20]  L. Arzel,et al.  Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se2 solar cells , 2014 .

[21]  N. Boudet,et al.  Defects limitation in epitaxial GaP on bistepped Si surface using UHVCVD-MBE growth cluster , 2013 .

[22]  L. Mansfield,et al.  Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency , 2012 .

[23]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[24]  L. Arzel,et al.  Recrystallization of CIGSe layers grown by three-step processes: A model based on grain boundary migration , 2010 .

[25]  A. Wakahara,et al.  Lattice relaxation process and crystallographic tilt in GaP layers grown on misoriented Si(001) substrates by metalorganic vapor phase epitaxy , 2010 .

[26]  N. Barreau,et al.  Structural study and electronic band structure investigations of the solid solution NaxCu1 − xIn5S8 and its impact on the Cu(In,Ga)Se2/In2S3 interface of solar cells , 2007 .

[27]  Dominique Drouin,et al.  CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.

[28]  Satoshi Kobayashi,et al.  Ordering and Orientation of Epitaxial CuInS2 Films Grown on GaP(001) by Three-Source Evaporation , 2007 .

[29]  T. Eisenbarth,et al.  Evidence for a neutral grain-boundary barrier in chalcopyrites. , 2006, Physical review letters.

[30]  Satoshi Kobayashi,et al.  Epitaxial growth of CuInS2 thin films on (001)GaP by three-source evaporation , 2006 .

[31]  S. Siebentritt,et al.  Epitaxial Cu(In,Ga)S2 thin film solar cells , 2005 .

[32]  Ingo Salzmann,et al.  STEREOPOLE: software for the analysis of X-ray diffraction pole figures with IDL , 2004 .

[33]  M. Lux‐Steiner,et al.  Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2 chalcopyrite from its composition gradient , 2004 .

[34]  J. R. Botha,et al.  An investigation into the ordering of metal atoms in CuGaS2 grown by MOVPE , 2004 .

[35]  Satoshi Kobayashi,et al.  Growth of CuInS2 and CuIn5S8 on Si(001) by the Multisource Evaporation Method , 2003 .

[36]  Satoshi Kobayashi,et al.  Growth of Cu(In,Ga)S2 on Si(100) substrates by multisource evaporation , 2003 .

[37]  A. Chuvilin,et al.  Epitaxial CuIn(1−x)GaxS2 on Si(111): A perfectly lattice-matched system for x≈0.5 , 2003 .

[38]  R. Scheer,et al.  Quality assessment of CuInS2-based solar cells by Raman scattering , 2003 .

[39]  U. Rau,et al.  Composition dependence of defect energies and band alignments in the Cu(In1−xGax)(Se1−ySy)2 alloy system , 2002 .

[40]  H. Metzner,et al.  Order and disorder in epitaxially grown CuInS2 , 2001 .

[41]  R. Scheer,et al.  Surface properties of (111), (001), and (110)-oriented epitaxial CuInS2/Si films , 2001 .

[42]  J. Pascual,et al.  Optical functions and electronic structure of CuInSe 2 , CuGaSe 2 , CuInS 2 , and CuGaS 2 , 2001, cond-mat/0112048.

[43]  S. Chichibu,et al.  Photoluminescence of CuGaS2 epitaxial layers grown by metalorganic vapor phase epitaxy , 2000 .

[44]  H. Metzner,et al.  Structural and electronic properties of epitaxially grown CuInS2 films , 2000 .

[45]  D. Su,et al.  Transmission electron microscopy investigation and first-principles calculation of the phase stability in epitaxial CuInS2 and CuGaSe2 films , 1999 .

[46]  H. Metzner,et al.  Epitaxial growth of CuInS2 on sulphur terminated Si(001) , 1998 .

[47]  S. Chichibu,et al.  Heteroepitaxial Growth of CuGaS 2 Layers by Low-Pressure Metalorganic Chemical Vapor Deposition , 1995 .

[48]  L. Gastaldi,et al.  On the space groups of two thiospinels , 1979 .

[49]  L. Arzel,et al.  Investigation of co-evaporated polycrystalline Cu(In,Ga)S2 thin film yielding 16.0 % efficiency solar cell , 2022, EPJ Photovoltaics.

[50]  N. Barreau,et al.  Elaboration of wide bandgap CIGS on silicon by electrodeposition of stacked metal precursors and sulfur annealing for tandem solar cell applications , 2020, EPJ Photovoltaics.

[51]  K. Catchpole,et al.  Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency , 2014, IEEE Journal of Photovoltaics.

[52]  S. Knack Copper-related defects in silicon , 2004 .