Topology is irrelevant (in a dichotomy conjecture for infinite domain constraint satisfaction problems)

The tractability conjecture for finite domain constraint satisfaction problems (CSPs) stated that such CSPs are solvable in polynomial time whenever there is no natural reduction, in some precise t...

[1]  Michael Pinsker,et al.  Algebraic and model theoretic methods in constraint satisfaction , 2015, ArXiv.

[2]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[4]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[5]  Manuel Bodirsky,et al.  A Dichotomy for First-Order Reducts of Unary Structures , 2016, Log. Methods Comput. Sci..

[6]  Michael Pinsker,et al.  Schaefer's Theorem for Graphs , 2015, J. ACM.

[7]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[8]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[9]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[10]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[11]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2008, STOC.

[12]  Michael Pinsker,et al.  Reconstructing the topology of clones , 2013, ArXiv.

[13]  Manuel Bodirsky Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..

[14]  R. McKenzie,et al.  Optimal strong Mal’cev conditions for omitting type 1 in locally finite varieties , 2014 .

[15]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[16]  Libor Barto,et al.  The wonderland of reflections , 2015, Israel Journal of Mathematics.

[17]  Michael Pinsker,et al.  Topological Birkhoff , 2012, ArXiv.

[18]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[19]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[20]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[21]  Libor Barto,et al.  Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem , 2012, Log. Methods Comput. Sci..

[22]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[23]  Libor Barto,et al.  Absorption in Universal Algebra and CSP , 2017, The Constraint Satisfaction Problem.

[24]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[25]  Libor Barto,et al.  Equations in oligomorphic clones and the Constraint Satisfaction Problem for $ω$-categorical structures , 2016, J. Math. Log..

[26]  Libor Barto,et al.  The equivalence of two dichotomy conjectures for infinite domain constraint satisfaction problems , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[27]  Libor Barto,et al.  The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[28]  Manuel Bodirsky,et al.  A universal-algebraic proof of the complexity dichotomy for Monotone Monadic SNP , 2018, LICS.

[29]  Manuel Bodirsky,et al.  Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.

[30]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[31]  Andrei A. Bulatov H-Coloring dichotomy revisited , 2005, Theor. Comput. Sci..

[32]  M. Siggers A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .

[33]  L. A. Kaluzhnin,et al.  Galois theory for Post algebras. II , 1969 .

[34]  Libor Barto,et al.  Polymorphisms, and How to Use Them , 2017, The Constraint Satisfaction Problem.

[35]  W. Taylor Varieties Obeying Homotopy Laws , 1977, Canadian Journal of Mathematics.

[36]  David M. Evans,et al.  A counterexample to the reconstruction of ω-categorical structures from their endomorphism monoid , 2018 .

[37]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[38]  Miroslav Olvs'ak The weakest nontrivial idempotent equations , 2016, 1609.00531.

[39]  Michael Pinsker,et al.  PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.

[40]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[41]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[42]  Peter Jonsson,et al.  The Complexity of Phylogeny Constraint Satisfaction Problems , 2015, ACM Trans. Comput. Log..

[43]  Libor Barto,et al.  THE CONSTRAINT SATISFACTION PROBLEM AND UNIVERSAL ALGEBRA , 2015, The Bulletin of Symbolic Logic.