A Reduced Basis Enrichment for the eXtended Finite Element Method

This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal a priori error estimate and some computational tests including a comparison with some other strategies.

[1]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[2]  Anthony T. Patera,et al.  Reduced basis approximation and a posteriori error estimation for stress intensity factors , 2007 .

[3]  Hachmi Ben Dhia,et al.  Multiscale mechanical problems: the Arlequin method , 1998 .

[4]  Elie Chahine Etude mathématique et numérique de méthodes d'éléments finis étendues pour le calcul en domaines fissurés , 2008 .

[5]  Nicolas Moës,et al.  X-FEM, de nouvelles frontières pour les éléments finis , 2002 .

[6]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[7]  Yvon Maday,et al.  A reduced-basis element method , 2002 .

[8]  Roland Glowinski,et al.  Approximation of multi-scale elliptic problems using patches of finite elements , 2003 .

[9]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[10]  H. Dhia Problèmes mécaniques multi-échelles: la méthode Arlequin , 1998 .

[11]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[12]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[13]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[14]  Patrick Laborde,et al.  Spider XFEM, an extended finite element variant for partially unknown crack-tip displacement , 2008 .

[15]  Jean-Luc Guermond,et al.  Eléments finis : théorie, applications, mise en œuvre , 2002 .

[16]  M. Dupeux Mesure des énergies de rupture interfaciale : problématique et exemples de résultats d'essais de gonflement-décollement , 2004 .

[17]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[18]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[19]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[20]  P. Laborde,et al.  A non-conformal eXtended Finite Element approach: Integral matching Xfem , 2011 .

[21]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[22]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[23]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[24]  Patrick Laborde,et al.  Crack tip enrichment in the XFEM method using a cut-off function , 2008 .

[25]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .