dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants

[1]  Michael W Taylor,et al.  Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater , 2014, Applied Microbiology and Biotechnology.

[2]  P. Girguis,et al.  Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents , 2013, The ISME Journal.

[3]  M. W. Taylor,et al.  Thermal stress responses in the bacterial biosphere of the Great Barrier Reef sponge, Rhopaloeides odorabile. , 2012, Environmental microbiology.

[4]  He-ping Zhao,et al.  Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm. , 2012, Environmental science & technology.

[5]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[6]  K. Biswas,et al.  Microbial Community Composition and Dynamics of Moving Bed Biofilm Reactor Systems Treating Municipal Sewage , 2011, Applied and Environmental Microbiology.

[7]  Joshua P Boltz,et al.  Moving Bed Biofilm Reactor Technology: Process Applications, Design, and Performance , 2011, Water environment research : a research publication of the Water Environment Federation.

[8]  Zhiguo Yuan,et al.  Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate , 2011, Applied Microbiology and Biotechnology.

[9]  A. Muirhead,et al.  Changes in sulfate-reducing bacterial populations during the onset of black band disease , 2011, The ISME Journal.

[10]  Andreas Richter,et al.  Microorganisms with Novel Dissimilatory (Bi)Sulfite Reductase Genes Are Widespread and Part of the Core Microbiota in Low-Sulfate Peatlands , 2010, Applied and Environmental Microbiology.

[11]  J. A. Aas,et al.  Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. , 2010, World journal of gastroenterology.

[12]  David Culley,et al.  Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. , 2010, Microbiology.

[13]  M. Wagner,et al.  A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland , 2010, The ISME Journal.

[14]  J. Aislabie,et al.  Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. , 2010, Environmental microbiology.

[15]  J. Aislabie,et al.  Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. , 2009, Canadian journal of microbiology.

[16]  M. Cotta,et al.  Development and comparison of SYBR Green quantitative real‐time PCR assays for detection and enumeration of sulfate‐reducing bacteria in stored swine manure , 2008, Journal of applied microbiology.

[17]  D. Lovley,et al.  Quantification of Desulfovibrio vulgaris Dissimilatory Sulfite Reductase Gene Expression during Electron Donor- and Electron Acceptor-Limited Growth , 2008, Applied and Environmental Microbiology.

[18]  A. Stams,et al.  The ecology and biotechnology of sulphate-reducing bacteria , 2008, Nature Reviews Microbiology.

[19]  Willy Verstraete,et al.  Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. , 2008, Water research.

[20]  M. Wagner,et al.  Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). , 2007, FEMS microbiology ecology.

[21]  Asher Brenner,et al.  Quantification of Sulfate-reducing Bacteria in Industrial Wastewater, by Real-time Polymerase Chain Reaction (PCR) Using dsrA and apsA Genes , 2007, Microbial Ecology.

[22]  J. G. Kuenen,et al.  Diversity, Activity, and Abundance of Sulfate-Reducing Bacteria in Saline and Hypersaline Soda Lakes , 2007, Applied and Environmental Microbiology.

[23]  M. Wagner,et al.  Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. , 2007, Environmental microbiology.

[24]  K. Nauhaus,et al.  In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. , 2007, Environmental microbiology.

[25]  Gerard Muyzer,et al.  Analysis of Diversity and Activity of Sulfate-Reducing Bacterial Communities in Sulfidogenic Bioreactors Using 16S rRNA and dsrB Genes as Molecular Markers , 2006, Applied and Environmental Microbiology.

[26]  Marcin P. Joachimiak,et al.  JColorGrid: software for the visualization of biological measurements , 2006, BMC Bioinformatics.

[27]  J. Aislabie,et al.  Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. , 2005, FEMS microbiology ecology.

[28]  M. Wagner,et al.  Lateral Gene Transfer of Dissimilatory (Bi)Sulfite Reductase Revisited , 2005, Journal of bacteriology.

[29]  M. Wagner,et al.  Functional marker genes for identification of sulfate-reducing prokaryotes. , 2005, Methods in enzymology.

[30]  J. Suflita,et al.  Desulfomonile DeWeerd, Mandelco, Tanner, Woese and Suflita 1991, 178VP (Effective publication: DeWeerd, Mandelco, Tanner, Woese and Suflita 1990, 28) , 2005 .

[31]  M. Wagner,et al.  Microarray and Functional Gene Analyses of Sulfate-Reducing Prokaryotes in Low-Sulfate, Acidic Fens Reveal Cooccurrence of Recognized Genera and Novel Lineages , 2004, Applied and Environmental Microbiology.

[32]  C. Leang,et al.  Direct Correlation between Rates of Anaerobic Respiration and Levels of mRNA for Key Respiratory Genes in Geobacter sulfurreducens , 2004, Applied and Environmental Microbiology.

[33]  D. B. Nedwell,et al.  Detection and Enumeration of Sulphate-Reducing Bacteria in Estuarine Sediments by Competitive PCR , 2004 .

[34]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[35]  H. Cypionka,et al.  Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria , 1993, Archives of Microbiology.

[36]  C. Woese,et al.  Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium , 1990, Archives of Microbiology.

[37]  J. Jones,et al.  Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species , 1986, Archives of Microbiology.

[38]  F. Widdel,et al.  Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids , 1983, Archives of Microbiology.

[39]  F. Widdel,et al.  Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. , 1982, Archives of Microbiology.

[40]  R. Amann,et al.  Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. , 2003, Environmental microbiology.

[41]  K. A. Rodgers,et al.  Opal-A and associated microbes from Wairakei, New Zealand: the first 300 days , 2003, Mineralogical Magazine.

[42]  D. Stahl,et al.  Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin , 2003, Applied and Environmental Microbiology.

[43]  Y. Kamagata,et al.  Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. , 2002, International journal of systematic and evolutionary microbiology.

[44]  H. Cypionka,et al.  Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides , 2002, Archives of Microbiology.

[45]  Dilek F Sanin,et al.  Effect of solution physical chemistry on the rheological properties of activated sludge , 2002 .

[46]  Y. Watanabe,et al.  Successional Development of Sulfate-Reducing Bacterial Populations and Their Activities in a Wastewater Biofilm Growing under Microaerophilic Conditions , 2002, Applied and Environmental Microbiology.

[47]  Stephen L. Rathbun,et al.  Quantitative Comparisons of 16S rRNA Gene Sequence Libraries from Environmental Samples , 2001, Applied and Environmental Microbiology.

[48]  F. Spellman,et al.  Water and Wastewater Treatment: A Guide for the Nonengineering Professional , 2000 .

[49]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[50]  W. Verstraete,et al.  Recent developments in research on biogenic sulfuric acid attack of concrete , 2000 .

[51]  Piet N.L. Lens,et al.  Environmental Technologies to Treat Sulphur Pollution: Principles and Engineering , 2000 .

[52]  Gerard Muyzer,et al.  Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses , 1999, Applied and Environmental Microbiology.

[53]  R. Amann,et al.  On the Occurrence of Anoxic Microniches, Denitrification, and Sulfate Reduction in Aerated Activated Sludge , 1999, Applied and Environmental Microbiology.

[54]  S. Okabe,et al.  In Situ Analysis of Nitrifying Biofilms as Determined by In Situ Hybridization and the Use of Microelectrodes , 1999, Applied and Environmental Microbiology.

[55]  T. Ferdelman,et al.  Structural and Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms , 1998, Applied and Environmental Microbiology.

[56]  B. Rusten,et al.  The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater , 1998 .

[57]  M Weizenegger,et al.  Bacterial phylogeny based on comparative sequence analysis (review) , 1998, Electrophoresis.

[58]  A. Teske,et al.  Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary , 1996, Archives of Microbiology.

[59]  B. Rusten,et al.  Upgrading to nitrogen removal with the kmt moving bed biofilm process , 1994 .

[60]  D. Stahl,et al.  Community structure of a microbial mat: the phylogenetic dimension. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Hallvard Ødegaard,et al.  A new moving bed biofilm reactor - applications and results , 1994 .

[62]  H. Cypionka,et al.  Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria , 1992, Archives of Microbiology.

[63]  B. Jørgensen,et al.  Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms , 1992, Applied and environmental microbiology.

[64]  Richard I. Sedlak,et al.  Phosphorus and Nitrogen Removal from Municipal Wastewater: Principles and Practice, Second Edition , 1991 .

[65]  David A. Cornwell,et al.  Introduction to Environmental Engineering , 1991 .

[66]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[67]  A. Magurran Ecological Diversity and Its Measurement , 1988, Springer Netherlands.

[68]  R. Cord-Ruwisch A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria , 1985 .

[69]  L. Koe Ambient hydrogen sulphide levels at a wastewater treatment plant , 1985, Environmental monitoring and assessment.

[70]  L. Sijtsma,et al.  Competition for Sulfate and Ethanol Among Desulfobacter, Desulfobulbus, and Desulfovibrio Species Isolated from Intertidal Sediments , 1984, Applied and environmental microbiology.

[71]  M. P. Bryant,et al.  Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H2-Utilizing Methanogenic Bacteria , 1977, Applied and environmental microbiology.