Development of a Versatile Procedure Based on Natural Transformation for Marker-Free Targeted Genetic Modification in Streptococcus thermophilus

ABSTRACT A versatile natural transformation protocol was established for and successfully applied to 18 of the 19 Streptococcus thermophilus strains tested. The efficiency of the protocol enables the use of in vitro-amplified mutagenesis fragments to perform deletion or insertion of large genetic fragments. Depending on the phenotype linked to the mutation, markerless mutants can be selected either in two steps, i.e., resistance marker insertion and excision using an adapted Cre-loxP system, or in one step using a powerful positive screening procedure as illustrated here for histidine prototrophy.

[1]  L. Håvarstein,et al.  A food‐grade site‐directed mutagenesis system for Streptococcus thermophilus LMG 18311 , 2010, Letters in applied microbiology.

[2]  P. Horvath,et al.  A Novel Pheromone Quorum-Sensing System Controls the Development of Natural Competence in Streptococcus thermophilus and Streptococcus salivarius , 2009, Journal of bacteriology.

[3]  I. Biswas,et al.  A self-deleting Cre-lox-ermAM cassette, Cheshire, for marker-less gene deletion in Streptococcus pneumoniae. , 2009, Journal of microbiological methods.

[4]  R. Gardan,et al.  Gitton and Véronique Monnet Strain Lmd-9 Thermophilus Streptococcus Competence in Essential for the Development of Natural the Oligopeptide Transport System Is , 2009 .

[5]  L. Håvarstein,et al.  Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. , 2009, FEMS microbiology reviews.

[6]  Pascal Hols,et al.  Genome-Scale Model of Streptococcus thermophilus LMG18311 for Metabolic Comparison of Lactic Acid Bacteria , 2009, Applied and Environmental Microbiology.

[7]  G. A. Somkuti,et al.  Insertion of a heterologous gene construct into a non-functional ORF of the Streptococcus thermophilus chromosome , 2009, Biotechnology Letters.

[8]  I. Biswas,et al.  Markerless Multiple-Gene-Deletion System for Streptococcus mutans , 2008, Applied and Environmental Microbiology.

[9]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[10]  L. Fontaine,et al.  The Inhibitory Spectrum of Thermophilin 9 from Streptococcus thermophilus LMD-9 Depends on the Production of Multiple Peptides and the Activity of BlpGSt, a Thiol-Disulfide Oxidase , 2007, Applied and Environmental Microbiology.

[11]  E. Guédon,et al.  Quorum-Sensing Regulation of the Production of Blp Bacteriocins in Streptococcus thermophilus , 2007, Journal of bacteriology.

[12]  I. Biswas,et al.  Unmarked gene modification in Streptococcus mutans by a cotransformation strategy with a thermosensitive plasmid. , 2007, BioTechniques.

[13]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[14]  M. Kleerebezem,et al.  Cre-lox-Based System for Multiple Gene Deletions and Selectable-Marker Removal in Lactobacillus plantarum , 2006, Applied and Environmental Microbiology.

[15]  L. Håvarstein,et al.  Natural Genetic Transformation: a Novel Tool for Efficient Genetic Engineering of the Dairy Bacterium Streptococcus thermophilus , 2006, Applied and Environmental Microbiology.

[16]  P. Renault,et al.  New insights in the molecular biology and physiology of revealed by comparative genomics , 2005 .

[17]  Laetitia Fontaine,et al.  New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. , 2005, FEMS microbiology reviews.

[18]  M. Kleerebezem,et al.  Major Role of NAD-Dependent Lactate Dehydrogenases in Aerobic Lactate Utilization in Lactobacillus plantarum during Early Stationary Phase , 2004, Journal of bacteriology.

[19]  G. Linden,et al.  Restriction/modification in Streptococcus thermophilus: isolation and characterization of a type II restriction endonuclease Sth455I , 1993, Applied Microbiology and Biotechnology.

[20]  G. Pozzi,et al.  Method for introducing specific and unmarked mutations into the chromosome of Streptococcus pneumoniae , 2004, Molecular biotechnology.

[21]  Oscar P Kuipers,et al.  Controlling competence in Bacillus subtilis: shared use of regulators. , 2003, Microbiology.

[22]  G. Fitzgerald,et al.  Electrotransformation of industrial strains of Streptococcus thermophilus , 1999, Journal of applied microbiology.

[23]  J. Richardson,et al.  Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum , 1996, Journal of bacteriology.

[24]  B. Mollet,et al.  Multifactorial experimental design for optimizing transformation: Electroporation of Streptococcus thermophilus , 1994, Biotechnology and bioengineering.

[25]  S. Ehrlich,et al.  High-efficiency gene inactivation and replacement system for gram-positive bacteria , 1993, Journal of bacteriology.

[26]  E. Maguin,et al.  New thermosensitive plasmid for gram-positive bacteria , 1992, Journal of bacteriology.

[27]  A. Mercenier,et al.  Molecular genetics of Streptococcus thermophilus. , 1990, FEMS microbiology reviews.