HUBBLE SPACE TELESCOPE ACS IMAGING OF THE GOALS SAMPLE: QUANTITATIVE STRUCTURAL PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES WITH LIR > 1011.4 L☉

A Hubble Space Telescope/Advanced Camera for Surveys study of the structural properties of 85 luminous and ultraluminous (LIR > 1011.4 L☉) infrared galaxies (LIRGs and ULIRGs) in the Great Observatories All-sky LIRG Survey (GOALS) sample is presented. Two-dimensional GALFIT analysis has been performed on F814W “I-band” images to decompose each galaxy, as appropriate, into bulge, disk, central point-spread function (PSF) and stellar bar components. The fraction of bulge-less disk systems is observed to be higher in LIRGs (35%) than in ULIRGs (20%), with the disk+bulge systems making up the dominant fraction of both LIRGs (55%) and ULIRGs (45%). Further, bulge+disk systems are the dominant late-stage merger galaxy type and are the dominant type for LIRGs and ULIRGs at almost every stage of galaxy-galaxy nuclear separation. The mean I-band host absolute magnitude of the GOALS galaxies is −22.64 ± 0.62 mag (1.8 ), and the mean bulge absolute magnitude in GOALS galaxies is about 1.1 mag fainter than the mean host magnitude. Almost all ULIRGs have bulge magnitudes at the high end (−20.6 to −23.5 mag) of the GOALS bulge magnitude range. Mass ratios in the GOALS binary systems are consistent with most of the galaxies being the result of major mergers, and an examination of the residual-to-host intensity ratios in GOALS binary systems suggests that smaller companions suffer more tidal distortion than the larger companions. We find approximately twice as many bars in GOALS disk+bulge systems (32.8%) than in pure-disk mergers (15.9%) but most of the disk+bulge systems that contain bars are disk-dominated with small bulges. The bar-to-host intensity ratio, bar half-light radius, and bar ellipticity in GOALS galaxies are similar to those found in nearby spiral galaxies. The fraction of stellar bars decreases toward later merger stages and smaller nuclear separations, indicating that bars are destroyed as the merger advances. In contrast, the fraction of nuclear PSFs increases toward later merger stages and is highest in late-stage systems with a single nucleus. Thus, light from an active galactic nucleus or compact nuclear star cluster is more visible at I band as ULIRGs enter their latter stages of evolution. Finally, both GOALS elliptical hosts and nearby Sloan Digital Sky Survey (SDSS) ellipticals occupy the same part of the surface brightness versus half-light radius plot (i.e., the “Kormendy Relation”) and have similar slopes, consistent with the possibility that the GOALS galaxies belong to the same parent population as the SDSS ellipticals.

[1]  D. Sanders,et al.  UNVEILING THE σ-DISCREPANCY. II. REVISITING THE EVOLUTION OF ULIRGs AND THE ORIGIN OF QUASARS , 2013, 1302.1680.

[2]  K. Sheth,et al.  HOT DISKS AND DELAYED BAR FORMATION , 2012, 1208.6304.

[3]  S. Veilleux,et al.  MASSIVE MOLECULAR OUTFLOWS AND NEGATIVE FEEDBACK IN ULIRGs OBSERVED BY HERSCHEL-PACS , 2011, 1105.1731.

[4]  N. Erickson,et al.  EVIDENCE FOR 1000 km s−1 MOLECULAR OUTFLOWS IN THE LOCAL ULIRG POPULATION , 2011, 1103.5508.

[5]  A. Evans,et al.  THE NUCLEAR STRUCTURE IN NEARBY LUMINOUS INFRARED GALAXIES: HUBBLE SPACE TELESCOPE NICMOS IMAGING OF THE GOALS SAMPLE , 2010, 1012.4012.

[6]  S. Okamura,et al.  THE HST/ACS COMA CLUSTER SURVEY. II. DATA DESCRIPTION AND SOURCE CATALOGS , 2010, 1005.3300.

[7]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[8]  S. Okamura,et al.  PROPERTIES OF DISKS AND BULGES OF SPIRAL AND LENTICULAR GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2009, 0908.4312.

[9]  S. Veilleux,et al.  SPITZER QUASAR AND ULIRG EVOLUTION STUDY (QUEST). IV. COMPARISON OF 1 Jy ULTRALUMINOUS INFRARED GALAXIES WITH PALOMAR-GREEN QUASARS , 2009, 0905.1577.

[10]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[11]  U. L. Laguna,et al.  The population of barred galaxies in the local universe - I. Detection and characterisation of bars , 2009, 0901.2346.

[12]  Andreas Burkert,et al.  BULGE n AND B/T IN HIGH-MASS GALAXIES: CONSTRAINTS ON THE ORIGIN OF BULGES IN HIERARCHICAL MODELS , 2008, 0807.0040.

[13]  S. Jogee,et al.  Bars In Disk-Dominated And Bulge-Dominated Galaxies At Z Similar To 0: New Insights From Similar To 3600 SDSS Galaxies , 2008 .

[14]  S. Jogee,et al.  Bars in Disk-dominated and Bulge-dominated Galaxies at z ~ 0: New Insights from ~3600 SDSS Galaxies , 2007, 0710.4674.

[15]  D. Gadotti,et al.  Image decomposition of barred galaxies and AGN hosts , 2007, 0708.3870.

[16]  Andrew A. West,et al.  Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence , 2007, 0710.4552.

[17]  Brian A. Powell,et al.  Photometric Decomposition of Barred Galaxies , 2007, astro-ph/0702720.

[18]  K. Sheth,et al.  A Near-Infrared Study of 2MASS Bars in Local Galaxies: An Anchor for High-Redshift Studies , 2006, astro-ph/0611540.

[19]  S. Jogee,et al.  Characterizing Bars at z ~ 0 in the Optical and NIR: Implications for the Evolution of Barred Disks with Redshift , 2006, astro-ph/0608039.

[20]  J. Tonry,et al.  A Fundamental Relation between Compact Stellar Nuclei, Supermassive Black Holes, and Their Host Galaxies , 2006, astro-ph/0603840.

[21]  L. Ho,et al.  A DEEP HUBBLE SPACE TELESCOPE H-BAND IMAGING SURVEY OF MASSIVE GAS-RICH MERGERS. II. THE QUEST QSOs , 2006, 0906.3157.

[22]  F. Bournaud,et al.  The lifetime of galactic bars: central mass concentrations and gravity torques , 2005, astro-ph/0509126.

[23]  S. Veilleux,et al.  Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies , 2005, astro-ph/0507037.

[24]  Institute for Astronomy,et al.  Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion , 2005, astro-ph/0506611.

[25]  S. Veilleux,et al.  Galactic Winds , 2005, astro-ph/0504435.

[26]  K. Jahnke,et al.  Quasar host galaxy star formation activity from multicolour data , 2003, astro-ph/0311123.

[27]  R. Buta,et al.  Comparison of Bar Strengths and Fractions of Bars in Active and Nonactive Galaxies , 2001, astro-ph/0111376.

[28]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[29]  K. Sheth,et al.  Barred Galaxies at z > 0.7: NICMOS Hubble Deep Field-North Observations , 2003, astro-ph/0305589.

[30]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane , 2003, astro-ph/0301626.

[31]  W. Jefferys,et al.  Central Mass Concentration and Bar Dissolution in Nearby Spiral Galaxies , 2002, astro-ph/0208467.

[32]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[33]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[34]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[35]  M. Steinmetz,et al.  The hierarchical origin of galaxy morphologies , 2002, astro-ph/0202466.

[36]  J. Barnes Formation of gas discs in merging galaxies , 2002, astro-ph/0201250.

[37]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[38]  J. Rhoads Cosmic‐Ray Rejection by Linear Filtering of Single Images , 2000, astro-ph/0002041.

[39]  Kartik Sheth,et al.  Molecular Gas, Dust, and Star Formation in the Barred Spiral NGC 5383 , 1999, astro-ph/9911280.

[40]  K. Sellgren,et al.  The Frequency of Barred Spiral Galaxies in the Near-Infrared , 1999, astro-ph/9910479.

[41]  R. Peletier,et al.  A Subarcsecond Resolution Near-Infrared Study of Seyfert and “Normal” Galaxies. II. Morphology , 1999, astro-ph/9907379.

[42]  M. Malkan,et al.  Morphology of the 12 Micron Seyfert Galaxies. I. Hubble Types, Axial Ratios, Bars, and Rings , 1999, astro-ph/9901410.

[43]  J. Mulchaey,et al.  The Fueling of Nuclear Activity: The Bar Properties of Seyfert and Normal Galaxies , 1997, astro-ph/9704094.

[44]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[45]  D. Sanders,et al.  The IRAS 1 Jy Survey of Ultraluminous Infrared Galaxies. I. The Sample and Luminosity Function , 1998, astro-ph/9806148.

[46]  J. Hibbard,et al.  H I, H II, and R-Band Observations of a Galactic Merger Sequence , 1995, astro-ph/9512035.

[47]  S. Veilleux,et al.  Optical Spectroscopy of Luminous Infrared Galaxies II. Analysis of the Nuclear and long-Slit Data , 1995 .

[48]  J. Hibbard,et al.  Dynamical Modeling of NGC 7252 and the Return of Tidal Material , 1995, astro-ph/9503030.

[49]  E. Pérez,et al.  The relation between dynamical perturbations, morphology, and nuclear activity in spiral galaxies , 1995 .

[50]  L. Hernquist,et al.  Dynamics of Interacting Galaxies , 1992 .

[51]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[52]  T. Heckman,et al.  Long-slit optical spectroscopy of powerful far-infrared galaxies - The nature of the nuclear energy source , 1989 .

[53]  T. Heckman,et al.  Emission-line Nebulae of Powerful Far-infrared Galaxies , 1989 .

[54]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[55]  G. Neugebauer,et al.  IRAS observations of Seyfert galaxies , 1985 .

[56]  G. Miley,et al.  Infrared Seyferts: a new population of active galaxies? , 1984 .

[57]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[58]  G. de Vaucouleurs,et al.  Revised Classification of 1500 Bright Galaxies. , 1963 .

[59]  J. Sérsic Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .