Skeletal myoblasts for cardiac repair.

Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed.

[1]  C. Mummery,et al.  Prospects for pluripotent stem cell‐derived cardiomyocytes in cardiac cell therapy and as disease models , 2009, Journal of cellular biochemistry.

[2]  A. Malhotra,et al.  Muscle-specific microRNA miR-206 promotes muscle differentiation , 2006, The Journal of cell biology.

[3]  Jian-Fu Chen,et al.  MicroRNAs in skeletal and cardiac muscle development. , 2007, DNA and cell biology.

[4]  S M Schwartz,et al.  Skeletal myoblast transplantation for repair of myocardial necrosis. , 1996, The Journal of clinical investigation.

[5]  Timothy J. Nelson,et al.  iPS Programmed Without c-MYC Yield Proficient Cardiogenesis for Functional Heart Chimerism , 2009, Circulation research.

[6]  P. Doevendans,et al.  Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. , 2008, Cardiovascular research.

[7]  P. Anversa,et al.  Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. , 2003, Circulation research.

[8]  G. Laufer,et al.  Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation. , 2005, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[9]  Timothy J. Nelson,et al.  Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. , 2009, Circulation.

[10]  E. Diethrich,et al.  One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). , 2009, JACC. Cardiovascular interventions.

[11]  M. Yacoub,et al.  Overexpression of connexin 43 in skeletal myoblasts: Relevance to cell transplantation to the heart. , 2001, The Journal of thoracic and cardiovascular surgery.

[12]  James T. Willerson,et al.  Transendocardial, Autologous Bone Marrow Cell Transplantation for Severe, Chronic Ischemic Heart Failure , 2003, Circulation.

[13]  P. Anversa,et al.  Cardiac regeneration. , 2006, Journal of the American College of Cardiology.

[14]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[15]  Shujia Jiang,et al.  Ischemic Preconditioning Augments Survival of Stem Cells via miR-210 Expression by Targeting Caspase-8-associated Protein 2* , 2009, The Journal of Biological Chemistry.

[16]  High-resolution magnetic resonance imaging of iron-labeled myoblasts using a standard 1.5-T clinical scanner , 2004, Magnetic Resonance Materials in Physics, Biology and Medicine.

[17]  Patrick W Serruys,et al.  Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. , 2003, Journal of the American College of Cardiology.

[18]  F. Prósper,et al.  A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. , 2006, Cardiovascular research.

[19]  S. Satomi-Kobayashi,et al.  Transplantation of cardiotrophin-1-expressing myoblasts to the left ventricular wall alleviates the transition from compensatory hypertrophy to congestive heart failure in Dahl salt-sensitive hypertensive rats. , 2004, Journal of the American College of Cardiology.

[20]  Meijing Wang,et al.  Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. , 2008, American journal of physiology. Heart and circulatory physiology.

[21]  H. Haider,et al.  Myoblast transplantation for cardiac repair: a clinical perspective. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[22]  S. Cook,et al.  Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. , 2008, Artificial organs.

[23]  H. Eisen Skeletal myoblast transplantation: no MAGIC bullet for ischemic cardiomyopathy , 2008, Nature Clinical Practice Cardiovascular Medicine.

[24]  D. Burkhoff,et al.  Myoblast Transfer in Ischemic Heart Failure: Effects on Rhythm Stability , 2009, Cell transplantation.

[25]  D. Skuk,et al.  Use of Repeating Dispensers to Increase the Efficiency of the Intramuscular Myogenic Cell Injection Procedure , 2006, Cell transplantation.

[26]  L. Formigli,et al.  Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell-cell contacts and relaxin treatment. , 2005, American journal of physiology. Cell physiology.

[27]  M. Rubart,et al.  Cardiac regeneration: repopulating the heart. , 2006, Annual review of physiology.

[28]  G. Fonarow,et al.  Feasibility and Safety of Autologous Myoblast Transplantation in Patients with Ischemic Cardiomyopathy , 2005, Cell transplantation.

[29]  Y. Chang,et al.  Tubulyzine, a novel tri-substituted triazine, prevents the early cell death of transplanted myogenic cells and improves transplantation success. , 2003, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[30]  M. Ashraf,et al.  Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. , 2008, Cardiovascular research.

[31]  S. Yamanaka Strategies and new developments in the generation of patient-specific pluripotent stem cells. , 2007, Cell stem cell.

[32]  D. Fiszer,et al.  Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. , 2005, European heart journal.

[33]  F. Prósper,et al.  Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. , 2003, European heart journal.

[34]  Doris A Taylor,et al.  Autologous skeletal myoblast transplantation improved hemodynamics and left ventricular function in chronic heart failure dogs. , 2005, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[35]  Jian-Fu Chen,et al.  microRNAs and muscle disorders , 2009, Journal of Cell Science.

[36]  G. I. Gallicano,et al.  Small RNAs, big potential: the role of MicroRNAs in stem cell function. , 2007, Current stem cell research & therapy.

[37]  P. Serruys,et al.  Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure , 2006, European journal of heart failure.

[38]  Doris A Taylor,et al.  The real estate of myoblast cardiac transplantation: negative remodeling is associated with location. , 2007, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[39]  A. Hagège,et al.  Long-Term Efficacy of Myoblast Transplantation on Regional Structure and Function After Myocardial Infarction , 2002, Circulation.

[40]  M. Ashraf,et al.  Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. , 2008, Journal of molecular and cellular cardiology.

[41]  J. Rodés‐Cabau,et al.  Percutaneous versus surgical delivery of autologous myoblasts after chronic myocardial infarction: An in vivo cardiovascular magnetic resonance study , 2009, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[42]  L. Ye,et al.  Reversal of myocardial injury using genetically modulated human skeletal myoblasts in a rodent cryoinjured heart model ☆ , 2005, European journal of heart failure.

[43]  L. Ye,et al.  Improved angiogenic response in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF165 and angiopoietin‐1 , 2007, European journal of heart failure.

[44]  A. Hagège,et al.  Myoblast transplantation for heart failure , 2001, The Lancet.

[45]  A. Hagège,et al.  Can erythropoietin improve skeletal myoblast engraftment in infarcted myocardium? , 2007, Interactive cardiovascular and thoracic surgery.

[46]  F. Prósper,et al.  Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. , 2004, International journal of cardiology.

[47]  Lars S. Maier,et al.  Generation of Functional Murine Cardiac Myocytes From Induced Pluripotent Stem Cells , 2008, Circulation.

[48]  M. Cheitlin,et al.  The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-Controlled Study of Myoblast Transplantation , 2009 .

[49]  A. Hagège,et al.  Intramyocardial Transplantation of Autologous Myoblasts: Can Tissue Processing Be Optimized? , 2000, Circulation.

[50]  W. G. Somers,et al.  Micro-RNA mediated regulation of proliferation, self-renewal and differentiation of mammalian stem cells , 2009, Cell adhesion & migration.

[51]  Chung-Dann Kan,et al.  Recipient age determines the cardiac functional improvement achieved by skeletal myoblast transplantation. , 2007, Journal of the American College of Cardiology.

[52]  J. M. Peterson,et al.  Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. , 2009, Journal of applied physiology.

[53]  M. Yacoub,et al.  Development of a Novel Method for Cell Transplantation Through the Coronary Artery , 2000, Circulation.

[54]  F. Prósper,et al.  Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. , 2010, European heart journal.

[55]  L. Ye,et al.  Transplantation of Nanoparticle Transfected Skeletal Myoblasts Overexpressing Vascular Endothelial Growth Factor-165 for Cardiac Repair , 2007, Circulation.

[56]  C. Nanni,et al.  Functional and histopathological improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy , 2008, Journal of cellular and molecular medicine.

[57]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[58]  C. Murry,et al.  Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing? , 2000, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[59]  H. Mond,et al.  The Implantable Cardioverter‐Defibrillator Lead: Principles, Progress, and Promises , 2009, Pacing and clinical electrophysiology : PACE.

[60]  A. Hagège,et al.  Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy , 2003, The Lancet.

[61]  L. Formigli,et al.  Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. , 2009, Journal of molecular and cellular cardiology.

[62]  D. Glower,et al.  Cellular cardiomyoplasty improves diastolic properties of injured heart. , 1999, The Journal of surgical research.

[63]  Marie-christine Caron,et al.  Growth Factor Coinjection Improves the Migration Potential of Monkey Myogenic Precursors without Affecting Cell Transplantation Success , 2009, Cell transplantation.

[64]  M. Zviman,et al.  Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. , 2009, European heart journal.

[65]  M. Rota,et al.  Myocardial Regeneration by Exogenous and Endogenous Progenitor Cells. , 2007, Drug discovery today. Disease mechanisms.

[66]  A. Hagège,et al.  Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. , 2003, Journal of the American College of Cardiology.

[67]  A. Hattori,et al.  Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. , 2002, Molecular biology of the cell.

[68]  M. Yacoub,et al.  Targeted Cell Delivery Into Infarcted Rat Hearts by Retrograde Intracoronary Infusion: Distribution, Dynamics, and Influence on Cardiac Function , 2004, Circulation.

[69]  L. Ye,et al.  Adult Stem Cells for Cardiac Repair: A Choice Between Skeletal Myoblasts and Bone Marrow Stem Cells , 2006, Experimental biology and medicine.

[70]  AnnarosaLeri,et al.  Bone Marrow Cells Differentiate in Cardiac Cell Lineages After Infarction Independently of Cell Fusion , 2005 .

[71]  P. Merlet,et al.  Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. , 2003, Cardiovascular research.

[72]  D. Torella,et al.  Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Teruo Okano,et al.  Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. , 2009, The Journal of clinical investigation.

[74]  N. Mal,et al.  Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. , 2006, Heart rhythm.

[75]  M. Gyöngyösi,et al.  Colony-stimulating factor-1 transfection of myoblasts improves the repair of failing myocardium following autologous myoblast transplantation. , 2008, Cardiovascular research.

[76]  Y. Kaneda,et al.  Cell Transplantation for the Treatment of Acute Myocardial Infarction Using Vascular Endothelial Growth Factor–Expressing Skeletal Myoblasts , 2001, Circulation.

[77]  L. Ye,et al.  Angiomyogenesis using liposome based vascular endothelial growth factor-165 transfection with skeletal myoblast for cardiac repair. , 2008, Biomaterials.

[78]  T. Okano,et al.  Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. , 2009, The Journal of thoracic and cardiovascular surgery.

[79]  L. Ye,et al.  Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease , 2008, Journal of cellular and molecular medicine.

[80]  Ronald A. Li,et al.  Human embryonic stem cell-derived cardiomyocytes for heart therapies. , 2007, Cardiovascular & hematological disorders drug targets.

[81]  H. Haider,et al.  Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. , 2008, Journal of molecular and cellular cardiology.

[82]  H. Haider,et al.  Pharmacologically Preconditioned Skeletal Myoblasts Are Resistant to Oxidative Stress and Promote Angiomyogenesis via Release of Paracrine Factors in the Infarcted Heart , 2007, Circulation research.

[83]  T. Partridge,et al.  Dynamics of Myoblast Transplantation Reveal a Discrete Minority of Precursors with Stem Cell–like Properties as the Myogenic Source , 1999, The Journal of cell biology.

[84]  J. Zweier,et al.  Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. , 2007, American journal of physiology. Heart and circulatory physiology.

[85]  M. Yacoub,et al.  Choice of Cell-Delivery Route for Skeletal Myoblast Transplantation for Treating Post-Infarction Chronic Heart Failure in Rat , 2008, PloS one.

[86]  H. Haider,et al.  Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. , 2007, Journal of molecular and cellular cardiology.

[87]  A. Bissery,et al.  Skeletal myoblast transplantation through a catheter-based coronary sinus approach: an effective means of improving function of infarcted myocardium. , 2005, European heart journal.

[88]  E. Diethrich,et al.  Safety and feasibility of percutaneous autologous skeletal myoblast transplantation in the coil-infarcted swine myocardium. , 2006, Journal of pharmacological and toxicological methods.

[89]  J. Roncalli,et al.  Mesenchymal Stem Cells Promote Matrix Metalloproteinase Secretion by Cardiac Fibroblasts and Reduce Cardiac Ventricular Fibrosis After Myocardial Infarction , 2009, Stem cells.

[90]  Doris A Taylor,et al.  Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation , 1998, Nature Medicine.

[91]  N. Narula,et al.  Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. , 2002, Journal of cell science.

[92]  J. D. de Bakker,et al.  Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias , 2009, Journal of cellular and molecular medicine.

[93]  T. V. Gopal,et al.  Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro , 2005, PLoS biology.

[94]  P. Mills,et al.  GROWTH FACTORS IMPROVE THE IN VIVO MIGRATION OF HUMAN SKELETAL MYOBLASTS BY MODULATING THEIR ENDOGENOUS PROTEOLYTIC ACTIVITY , 2004, Transplantation.

[95]  A. Alba,et al.  The future is here: ventricular assist devices for the failing heart , 2009, Expert review of cardiovascular therapy.

[96]  Teruo Okano,et al.  Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. , 2006, The Journal of thoracic and cardiovascular surgery.

[97]  D. Bodine,et al.  Transplanted Adult Bone Marrow Cells Repair Myocardial Infarcts in Mice , 2001, Annals of the New York Academy of Sciences.

[98]  J. Hare,et al.  Is skeletal myoblast transplantation proarrhythmic? The jury is still out. , 2006, Heart rhythm.

[99]  Samuel Bernard,et al.  Evidence for Cardiomyocyte Renewal in Humans , 2008, Science.

[100]  C. Murry,et al.  Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. , 2000 .

[101]  A. Hagège,et al.  Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. , 2003, Cardiovascular research.

[102]  J. Cleland,et al.  Heart failure due to ischaemic heart disease: epidemiology, pathophysiology and progression. , 1999, Journal of cardiovascular pharmacology.

[103]  M. Ashraf,et al.  Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. , 2003, Journal of molecular and cellular cardiology.

[104]  N. Frangogiannis The immune system and cardiac repair. , 2008, Pharmacological research.

[105]  P. Menasché Skeletal myoblasts as a therapeutic agent. , 2007, Progress in cardiovascular diseases.

[106]  K. Pfannkuche,et al.  Electrophysiological Maturation and Integration of Murine Fetal Cardiomyocytes After Transplantation , 2007, Circulation research.

[107]  P. Menasché,et al.  Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. , 2009, The Annals of thoracic surgery.

[108]  M. Yacoub,et al.  Transplantation of skeletal myoblasts secreting an IL-1 inhibitor modulates adverse remodeling in infarcted murine myocardium , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[109]  K. Beam,et al.  Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors , 1994, The Journal of general physiology.

[110]  D. Torella,et al.  Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration , 2003, Cell.

[111]  A. Hagège,et al.  Is Skeletal Myoblast Transplantation Clinically Relevant in the Era of Angiotensin-Converting Enzyme Inhibitors? , 2001, Circulation.

[112]  Roberto Bolli,et al.  Life and Death of Cardiac Stem Cells: A Paradigm Shift in Cardiac Biology , 2006, Circulation.

[113]  E. Fiumana,et al.  Local Activation or Implantation of Cardiac Progenitor Cells Rescues Scarred Infarcted Myocardium Improving Cardiac Function , 2008, Circulation research.

[114]  Gayle M. Smythe,et al.  Notch-Mediated Restoration of Regenerative Potential to Aged Muscle , 2003, Science.

[115]  D. Fiszer,et al.  Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. , 2004, American heart journal.

[116]  F. Prósper,et al.  Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. , 2006, The Journal of thoracic and cardiovascular surgery.

[117]  Julie A. Phillippi,et al.  Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. , 2008, Journal of the American College of Cardiology.

[118]  Gordana Vunjak-Novakovic,et al.  Percutaneous Cell Delivery into the Heart Using Hydrogels Polymerizing in Situ , 2009, Cell transplantation.

[119]  C. Bearzi,et al.  Identification of a coronary vascular progenitor cell in the human heart , 2009, Proceedings of the National Academy of Sciences.

[120]  R. Werner,et al.  MIR-206 regulates connexin43 expression during skeletal muscle development , 2006, Nucleic acids research.

[121]  C. Nienaber,et al.  Transcatheter Transplantation of Autologous Skeletal Myoblasts in Postinfarction Patients with Severe Left Ventricular Dysfunction , 2004, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[122]  R. C. Chiu,et al.  Cell Transplantation for Myocardial Repair: An Experimental Approach , 1992, Cell transplantation.

[123]  F. Pagani,et al.  Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. , 2003, Journal of the American College of Cardiology.

[124]  Guy Salama,et al.  Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia , 2007, Nature.

[125]  L. Ye,et al.  Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor , 2004, Journal of Molecular Medicine.

[126]  M. Fujita,et al.  Repeated implantation is a more effective cell delivery method in skeletal myoblast transplantation for rat myocardial infarction. , 2006, Circulation journal : official journal of the Japanese Circulation Society.

[127]  M. Yacoub,et al.  Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[128]  M. Soonpaa,et al.  Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. , 1997, The American journal of physiology.

[129]  P. Anversa,et al.  Myocyte growth and cardiac repair. , 2002, Journal of molecular and cellular cardiology.

[130]  Chong-K. Kim,et al.  Gene medicine: A new field of molecular medicine , 2001, Archives of pharmacal research.

[131]  L. Ye,et al.  Effectiveness of transient immunosuppression using cyclosporine for xenomyoblast transplantation for cardiac repair. , 2004, Transplantation proceedings.