A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight

Abstract Details are given for a Fortran implementation of an algorithm that uses stochastic spherical–radial rules for the numerical computation of multiple integrals over unbounded regions with Gaussian weight. The implemented rules are suitable for high-dimensional problems. A high-dimensional example from a computational finance application is used to illustrate the use of the rules.

[1]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[2]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[3]  John Monahan,et al.  Stochastic Integration Rules for Infinite Regions , 1998, SIAM J. Sci. Comput..

[4]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[5]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[6]  Tony F. Chan,et al.  Computing standard deviations: accuracy , 1979, CACM.

[7]  K. Fang,et al.  Number-theoretic methods in statistics , 1993 .

[8]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[9]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[10]  J. Monahan,et al.  Spherical-Radial Integration Rules for Bayesian Computation , 1997 .

[11]  Andrew F. Siegel,et al.  Unbiased Monte Carlo Integration Methods with Exactness for Low Order Polynomials , 1985 .

[12]  K. S. Tan,et al.  Quasi-Monte Carlo Methods in Numerical Finance , 1996 .

[13]  S. Haber Stochastic quadrature formulas , 1969 .

[14]  S. Tezuka,et al.  Toward real-time pricing of complex financial derivatives , 1996 .

[15]  I. P. Mysovskikh THE APPROXIMATION OF MULTIPLE INTEGRALS BY USING INTERPOLATORY CUBATURE FORMULAE , 1980 .

[16]  T. W. Anderson,et al.  Generation of random orthogonal matrices , 1987 .

[17]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[18]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[19]  George Marsaglia,et al.  A Fast, Easily Implemented Method for Sampling from Decreasing or Symmetric Unimodal Density Functions , 1984 .