Higgs bundles twisted by a vector bundle

In this paper, we consider a generalization of the theory of Higgs bundles over a smooth complex projective curve in which the twisting of the Higgs field by the canonical bundle of the curve is replaced by a rank 2 vector bundle. We define a Hitchin map and give a spectral correspondence. We also state a Hitchin–Kobayashi correspondence for a generalization of the Hitchin’s equations to this situation. In a certain sense, this theory lies halfway between the theories of Higgs bundles on a curve and on a higher dimensional variety.

[1]  I. Biswas,et al.  An Infinitesimal Study of the Moduli of Hitchin Pairs , 1994 .

[2]  Yu-Wei Fan Construction of the moduli space of Higgs bundles using analytic methods , 2020, Mathematical Research Letters.

[3]  C. Simpson Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .

[4]  Tsao-Hsien Chen,et al.  On the Hitchin morphism for higher-dimensional varieties , 2019, 1905.04741.

[5]  N. Nitsure Moduli space of semistable pairs on a curve , 1991 .

[6]  Peter Dalakov Meromorphic Higgs bundles and related geometries , 2016, 1602.03672.

[7]  R. Donagi,et al.  The Gerbe Of Higgs Bundles , 2000, math/0005132.

[8]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[9]  D. Diaconescu Moduli of ADHM sheaves and the local Donaldson–Thomas theory , 2008, 0801.0820.

[10]  T. Willmore Algebraic Geometry , 1973, Nature.

[11]  Carlos Simpson,et al.  Moduli of representations of the fundamental group of a smooth projective variety I , 1994 .

[12]  N. Hitchin Critical Loci for Higgs Bundles , 2017, Communications in Mathematical Physics.

[13]  Duiliu-Emanuel Diaconescu,et al.  Wallcrossing and Cohomology of The Moduli Space of Hitchin Pairs , 2010, 1004.4195.

[14]  N. Hitchin Stable bundles and integrable systems , 1987 .

[15]  Electric-Magnetic Duality And The Geometric Langlands Program , 2006, hep-th/0604151.

[16]  N. Châu Le lemme fondamental pour les algebres de Lie , 2008, 0801.0446.

[17]  M. Narasimhan,et al.  Spectral curves and the generalised theta divisor. , 1989 .

[18]  Richard P. Thomas,et al.  Modern Geometry: A Celebration of the Work of Simon Donaldson , 2018 .

[19]  Hitchin–Kobayashi Correspondence, Quivers, and Vortices , 2001, math/0112161.

[20]  Langlands duality for Hitchin systems , 2006, math/0604617.