Matrix Kesten recursion, inverse-Wishart ensemble and fermions in a Morse potential

The random variable 1 + z 1 + z 1 z 2 + … appears in many contexts and was shown by Kesten to exhibit a heavy tail distribution. We consider natural extensions of this variable and its associated recursion to N × N matrices either real symmetric β = 1 or complex Hermitian β = 2. In the continuum limit of this recursion, we show that the matrix distribution converges to the inverse-Wishart ensemble of random matrices. The full dynamics is solved using a mapping to N fermions in a Morse potential, which are non-interacting for β = 2. At finite N the distribution of eigenvalues exhibits heavy tails, generalizing Kesten’s results in the scalar case. The density of fermions in this potential is studied for large N, and the power-law tail of the eigenvalue distribution is related to the properties of the so-called determinantal Bessel process which describes the hard edge universality of random matrices. For the discrete matrix recursion, using free probability in the large N limit, we obtain a self-consistent equation for the stationary distribution. The relation of our results to recent works of Rider and Valkó, Grabsch and Texier, as well as Ossipov, is discussed.

[1]  Frederick Solomon Random Walks in a Random Environment , 1975 .

[2]  Dan Voiculescu,et al.  Free Probability Theory: Random Matrices and von Neumann Algebras , 1995 .

[3]  Lotharingien de Combinatoire Free Probability Theory and Non-crossing Partitions , 1997 .

[4]  F. D. Cunden,et al.  Integer moments of complex Wishart matrices and Hurwitz numbers , 2018, Annales de l’Institut Henri Poincaré D.

[5]  Harry Kesten,et al.  A limit law for random walk in a random environment , 1975 .

[6]  T. Tao Topics in Random Matrix Theory , 2012 .

[7]  A. Georges,et al.  Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence of a uniform bias force , 2017, 1710.05595.

[8]  B. Rider,et al.  Matrix Dufresne Identities , 2016 .

[9]  M. Batchelor Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems , 2005 .

[10]  D. Dufresne The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding , 1990 .

[11]  I. Dolgachev,et al.  Lectures on Invariant Theory , 2003 .

[12]  Statistics of fermions in a $d$-dimensional box near a hard wall , 2017, 1706.03598.

[13]  Arianna Montorsi,et al.  Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I, Theory , 1990 .

[14]  Daniel Dufresne The integral of geometric Brownian motion , 2001 .

[15]  A. Comtet,et al.  Classical diffusion of a particle in a one-dimensional random force field , 1990 .

[16]  T. Hida Functionals of Brownian Motion , 1977 .

[17]  D. Fisher,et al.  Random walkers in one-dimensional random environments: exact renormalization group analysis. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Bernard Derrida,et al.  Velocity and diffusion constant of a periodic one-dimensional hopping model , 1983 .

[19]  F. Calogero Solution of a three-body problem in one-dimension , 1969 .

[20]  D. Bernard,et al.  From Stochastic Spin Chains to Quantum Kardar-Parisi-Zhang Dynamics. , 2020, Physical review letters.

[21]  Jean-Philippe Bouchaud,et al.  Power laws in economics and finance: some ideas from physics , 2001 .

[22]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[23]  P. Forrester Log-Gases and Random Matrices , 2010 .

[24]  R. Axtell Zipf Distribution of U.S. Firm Sizes , 2001, Science.

[25]  M. Schroder On the integral of geometric Brownian motion , 2002, math/0205063.

[26]  Nicolas Privault,et al.  Determinantal Point Processes , 2016 .

[27]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[28]  Wojciech Tarnowski,et al.  Eikonal formulation of large dynamical random matrix models. , 2021, Physical review. E.

[29]  C. Texier,et al.  Topological phase transitions in the 1D multichannel Dirac equation with random mass and a random matrix model , 2015, 1506.05322.

[30]  Marc Yor,et al.  Exponential functionals of Brownian motion, I: Probability laws at fixed time , 2005 .

[31]  Christophe Texier,et al.  Wigner time-delay distribution in chaotic cavities and freezing transition. , 2013, Physical review letters.

[33]  J. M. Luck,et al.  On the distribution of a random variable occurring in 1D disordered systems , 1985 .

[34]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[35]  A. Ossipov Scattering Approach to Anderson Localization. , 2018, Physical review letters.

[36]  J. Bouchaud,et al.  Eigenvector dynamics: General theory and some applications. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  K. Johansson Random matrices and determinantal processes , 2005, math-ph/0510038.

[39]  J. Cardy Quantum Network Models and Classical Localization Problems , 2010, 1004.3198.

[40]  B. Derrida,et al.  Classical Diffusion on a Random Chain , 1982 .

[41]  Didier Sornette,et al.  Theory of Zipf's Law and Beyond , 2009 .

[42]  First-passage time for random walks in random environments. , 1989 .

[43]  On the Brownian-motion model for the eigenvalues of a random matrix , 1965 .

[44]  Universal shocks in random matrix theory. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  M. Nowak,et al.  Universal shocks in the Wishart random-matrix ensemble. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[47]  J. Bouchaud,et al.  A First Course in Random Matrix Theory , 2020 .

[48]  T. Mikosch,et al.  Large deviations for solutions to stochastic recurrence equations under Kesten’s condition , 2013, 1307.6677.

[49]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[50]  S. Majumdar,et al.  Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary , 2019, Journal of Statistical Physics.

[51]  B Derrida,et al.  Singular behaviour of certain infinite products of random 2 × 2 matrices , 1983 .

[52]  Jean-Philippe Bouchaud,et al.  Cleaning large correlation matrices: tools from random matrix theory , 2016, 1610.08104.

[53]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[54]  B. Derrida,et al.  Polymers on disordered trees, spin glasses, and traveling waves , 1988 .

[55]  A. Polyanin,et al.  Handbook of First-Order Partial Differential Equations , 2001 .

[56]  D. Voiculescu Symmetries of some reduced free product C*-algebras , 1985 .

[57]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[58]  M. Mézard,et al.  Wealth condensation in a simple model of economy , 2000, cond-mat/0002374.

[59]  Ì. H. Duru Morse-potential Green's function with path integrals , 1983 .

[60]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[61]  F. Spitzer,et al.  Convergence in distribution of products of random matrices , 1984 .

[62]  Brian Rider,et al.  Diffusion at the Random Matrix Hard Edge , 2008, 0803.2043.

[63]  K. M. Frahm,et al.  Distribution of the quantum mechanical time-delay matrix for a chaotic cavity , 1999 .

[64]  F. D. Cunden,et al.  Free Fermions and the Classical Compact Groups , 2018, Journal of Statistical Physics.

[65]  A. Paulson,et al.  Limit laws of a sequence determined by a random difference equation governing a one-compartment system , 1972 .

[66]  M W Feldman,et al.  Models for cultural inheritance. I. Group mean and within group variation. , 1973, Theoretical population biology.

[67]  S. Majumdar,et al.  Noninteracting fermions in a trap and random matrix theory , 2018, Journal of Physics A: Mathematical and Theoretical.

[68]  T. Assiotis A matrix Bougerol identity and the Hua-Pickrell measures , 2017, 1707.09915.

[69]  N. G. van Kampen,et al.  Itô versus Stratonovich , 1981 .

[70]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[71]  T. Assiotis Ergodic Decomposition for Inverse Wishart Measures on Infinite Positive-Definite Matrices , 2019, Symmetry, Integrability and Geometry: Methods and Applications.

[72]  P. M. Shearer,et al.  Zipf Distribution of U . S . Firm Sizes , 2022 .

[73]  K. M. Frahm,et al.  Quantum mechanical time-delay matrix in chaotic scattering. , 1997 .

[74]  Y. Sinai The Limiting Behavior of a One-Dimensional Random Walk in a Random Medium , 1983 .

[75]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[76]  A. Guionnet,et al.  Free probability and random matrices , 2012 .

[77]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[78]  T. Grava,et al.  Laguerre Ensemble: Correlators, Hurwitz Numbers and Hodge Integrals , 2019, Annales Henri Poincaré.

[79]  Satya N Majumdar,et al.  Nonintersecting Brownian interfaces and Wishart random matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  A. Polyanin,et al.  Handbook of Nonlinear Partial Differential Equations , 2003 .

[81]  C. Texier Wigner time delay and related concepts: Application to transport in coherent conductors , 2015, 1507.00075.

[82]  N. Simm,et al.  Large-$N$ expansion for the time-delay matrix of ballistic chaotic cavities , 2016, 1607.00250.

[83]  Harry Kesten,et al.  The limit distribution of Sinai's random walk in random environment , 1986 .

[84]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[85]  J. Bouchaud,et al.  Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko–Pastur law , 2012, 1209.6171.

[86]  X. Gabaix Power Laws in Economics and Finance , 2008 .

[87]  M. Yor,et al.  Exponential functionals of Brownian motion and disordered systems , 1996, Journal of Applied Probability.

[88]  G. Schehr,et al.  Non-interacting fermions in hard-edge potentials , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[89]  Jonathan Novak,et al.  Three lectures on free probability , 2012, 1205.2097.

[90]  B. Simon,et al.  From power-localized to extended states in a class of one-dimensional disordered systems , 1984 .

[91]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[92]  D. Buraczewski,et al.  On the rate of convergence in the Kesten renewal theorem , 2015 .

[93]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[94]  Universal shocks in the Wishart random-matrix ensemble - a sequel , 2013, 1306.4014.

[95]  Xavier Gabaix,et al.  Power Laws in Economics and Finance , 2009 .

[96]  J. Bouchaud,et al.  The relaxation-time spectrum of diffusion in a one-dimensional random medium: an exactly solvable case , 1987 .

[97]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[98]  Exact results on Sinai's diffusion , 1998, cond-mat/9809111.

[99]  Jean Desbois,et al.  TOPICAL REVIEW: Functionals of Brownian motion, localization and metric graphs , 2005 .

[100]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .