Geometry of multi-layer freeform structures for architecture

The geometric challenges in the architectural design of freeform shapes come mainly from the physical realization of beams and nodes. We approach them via the concept of parallel meshes, and present methods of computation and optimization. We discuss planar faces, beams of controlled height, node geometry, and multilayer constructions. Beams of constant height are achieved with the new type of edge offset meshes. Mesh parallelism is also the main ingredient in a novel discrete theory of curvatures. These methods are applied to the construction of quadrilateral, pentagonal and hexagonal meshes, discrete minimal surfaces, discrete constant mean curvature surfaces, and their geometric transforms. We show how to design geometrically optimal shapes, and how to find a meaningful meshing and beam layout for existing shapes.

[1]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[2]  Helmut Pottmann,et al.  Discrete Surfaces for Architectural Design , 2007 .

[3]  U. Pinkall,et al.  Discrete isothermic surfaces. , 1994 .

[4]  Dennis R. Shelden,et al.  A Parametric Strategy for Freeform Glass Structures Using Quadrilateral Planar Facets , 2004, ACADIA proceedings.

[5]  K. Brauner Vorlesungen über Differentialgeometrie III , 1930 .

[6]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[7]  Oded Schramm,et al.  Circle patterns with the combinatorics of the square grid , 1997 .

[8]  Takashi Maekawa,et al.  An overview of offset curves and surfaces , 1999, Comput. Aided Des..

[9]  Tim Hoffmann Discrete Rotational CMC Surfaces and the Elliptic Billiard , 1997, VisMath.

[10]  K. Polthier Unstable Periodic Discrete Minimal Surfaces , 2003 .

[11]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..

[12]  Constant Mean Curvature Trinoids , 2004, math/0403036.

[13]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[14]  W. Schief On a maximum principle for minimal surfaces and their integrable discrete counterparts , 2006 .

[15]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[16]  Hiroshi Jinnai,et al.  Measurements of Interfacial Curvatures of Bicontinuous Structure from Three-Dimensional Digital Images. 1. A Parallel Surface Method , 1998 .

[17]  A. Bobenko,et al.  Discrete differential geometry. Consistency as integrability , 2005, math/0504358.

[18]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[19]  A. Bobenko,et al.  Minimal surfaces from circle patterns : Geometry from combinatorics , 2003, math/0305184.

[20]  Yuri B. Suris,et al.  On organizing principles of discrete differential geometry. Geometry of spheres , 2006 .

[21]  Johannes Wallner,et al.  Geometric Modeling with Conical Meshes and Developable Surfaces , 2006, ACM Trans. Graph..

[22]  Barbara Cutler,et al.  Constrained planar remeshing for architecture , 2007, GI '07.

[23]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[24]  G. Ziegler Lectures on Polytopes , 1994 .

[25]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[26]  Esan Mandal,et al.  Remeshing Schemes for semi-regular tilings , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[27]  K. Polthier Polyhedral Surfaces of Constant Mean Curvature , 2002 .

[28]  H. Pottmann,et al.  Geometry of multi-layer freeform structures for architecture , 2007, SIGGRAPH 2007.

[29]  Johannes Wallner,et al.  The focal geometry of circular and conical meshes , 2008, Adv. Comput. Math..

[30]  Konrad Polthier,et al.  Constant Mean Curvature Surfaces Derived from Delaunay's and Wente's Examples , 1997, VisMath.