Agrobacterium-Mediated Plant Transformation: Biology and Applications

Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.

[1]  S. Pan,et al.  Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis , 2017, Science Advances.

[2]  S. Pan,et al.  Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K–powered ER/actin network , 2017, Proceedings of the National Academy of Sciences.

[3]  Vítor Amorim-Silva,et al.  Arabidopsis NahG Plants as a Suitable and Efficient System for Transient Expression using Agrobacterium tumefaciens. , 2017, Molecular plant.

[4]  M. Tijsterman,et al.  T-DNA integration in plants results from polymerase-θ-mediated DNA repair , 2016, Nature Plants.

[5]  V. Citovsky,et al.  A Functional Bacterium-to-Plant DNA Transfer Machinery of Rhizobium etli , 2016, PLoS pathogens.

[6]  Jian‐Kang Zhu,et al.  A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis , 2015, Plant Cell Reports.

[7]  G. P. V. van Heusden,et al.  The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF. , 2015, The Plant journal : for cell and molecular biology.

[8]  B. L. Patil,et al.  Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. , 2015, Molecular plant pathology.

[9]  K. Mysore,et al.  Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. , 2015, The Plant journal : for cell and molecular biology.

[10]  Kyle M. Miller,et al.  Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination , 2015, Nature.

[11]  E. Lai,et al.  Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions. , 2015, Phytopathology.

[12]  Meizhong Luo,et al.  The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus. , 2014, The New phytologist.

[13]  S. Gelvin,et al.  Is VIP1 important for Agrobacterium-mediated transformation? , 2014, The Plant journal : for cell and molecular biology.

[14]  G. Theißen,et al.  Floral Dip Transformation in Lepidium campestre , 2014 .

[15]  Christian González-Rivera,et al.  Mechanism and structure of the bacterial type IV secretion systems. , 2014, Biochimica et biophysica acta.

[16]  Alain Filloux,et al.  Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta , 2014, Cell host & microbe.

[17]  Z. Yuan,et al.  Agrobacterium tumefaciens responses to plant-derived signaling molecules , 2014, Front. Plant Sci..

[18]  Jeong-Hyeon Choi,et al.  Agrobacterium tumefaciens ExoR Controls Acid Response Genes and Impacts Exopolysaccharide Synthesis, Horizontal Gene Transfer, and Virulence Gene Expression , 2014, Journal of bacteriology.

[19]  Hung-Yi Wu,et al.  Expression and Functional Characterization of the Agrobacterium VirB2 Amino Acid Substitution Variants in T-pilus Biogenesis, Virulence, and Transient Transformation Efficiency , 2014, PloS one.

[20]  Shu-Hsing Wu,et al.  AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings , 2014, Plant Methods.

[21]  I. Kovalchuk,et al.  Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis. , 2014, Plant biotechnology journal.

[22]  C. Fuqua,et al.  Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium , 2014, Front. Plant Sci..

[23]  Jochen Gohlke,et al.  Plant responses to Agrobacterium tumefaciens and crown gall development , 2014, Front. Plant Sci..

[24]  E. Orlova,et al.  Structure of a type IV secretion system , 2014, Nature.

[25]  A. Velázquez‐Campoy,et al.  Dimerization of VirD2 Binding Protein Is Essential for Agrobacterium Induced Tumor Formation in Plants , 2014, PLoS pathogens.

[26]  Imen Mestiri,et al.  Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells. , 2014, The Plant journal : for cell and molecular biology.

[27]  S. Pan,et al.  Direct visualization of Agrobacterium-delivered VirE2 in recipient cells , 2014, The Plant journal : for cell and molecular biology.

[28]  G. P. V. van Heusden,et al.  Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells , 2013, MicrobiologyOpen.

[29]  A. Pitzschke Agrobacterium infection and plant defense—transformation success hangs by a thread , 2013, Front. Plant Sci..

[30]  C. Kado,et al.  Characterization and host range of five tumorigenic Agrobacterium tumefaciens strains and possible application in plant transient transformation assays , 2013 .

[31]  R. Doerge,et al.  Cytokinins Secreted by Agrobacterium Promote Transformation by Repressing a Plant Myb Transcription Factor , 2013, Science Signaling.

[32]  V. Citovsky,et al.  The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. , 2013, The International journal of developmental biology.

[33]  P. Waterhouse,et al.  A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis , 2013, The Plant journal : for cell and molecular biology.

[34]  N. Rizvi,et al.  Optimizing the transient Fast Agro-mediated Seedling Transformation (FAST) method in Catharanthusroseus seedlings , 2013, Plant Cell Reports.

[35]  M. Van Lijsebettens,et al.  Higher plant transformation: principles and molecular tools. , 2013, The International journal of developmental biology.

[36]  Jeong-Hyeon Choi,et al.  Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile‐to‐sessile switch , 2013, Molecular microbiology.

[37]  Yi-Chun Chen,et al.  The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens. , 2013, Phytopathology.

[38]  P. Christie,et al.  The expanding bacterial type IV secretion lexicon. , 2013, Research in microbiology.

[39]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[40]  P. Christie,et al.  A Putative Transmembrane Leucine Zipper of Agrobacterium VirB10 Is Essential for T-Pilus Biogenesis but Not Type IV Secretion , 2013, Journal of bacteriology.

[41]  E. Cascales,et al.  DNA Substrate-Induced Activation of the Agrobacterium VirB/VirD4 Type IV Secretion System , 2013, Journal of bacteriology.

[42]  V. Chandran Type IV secretion machinery: molecular architecture and function. , 2013, Biochemical Society Transactions.

[43]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[44]  Xiaozhen Hu,et al.  Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals , 2012, Proceedings of the National Academy of Sciences.

[45]  V. Citovsky,et al.  Disassembly of synthetic Agrobacterium T-DNA–protein complexes via the host SCFVBF ubiquitin–ligase complex pathway , 2012, Proceedings of the National Academy of Sciences.

[46]  C. Fuqua,et al.  Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. , 2012, Research in microbiology.

[47]  S. Mehrotra,et al.  Agrobacterium-Mediated Gene Transfer in Plants and Biosafety Considerations , 2012, Applied Biochemistry and Biotechnology.

[48]  K. Osakabe,et al.  Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice , 2012, The New phytologist.

[49]  A. Peña,et al.  The Hexameric Structure of a Conjugative VirB4 Protein ATPase Provides New Insights for a Functional and Phylogenetic Relationship with DNA Translocases* , 2012, The Journal of Biological Chemistry.

[50]  Seonghee Lee,et al.  Agrobacterium May Delay Plant Nonhomologous End-Joining DNA Repair via XRCC4 to Favor T-DNA Integration[W] , 2012, Plant Cell.

[51]  E. Lai,et al.  Acid-Induced Type VI Secretion System Is Regulated by ExoR-ChvG/ChvI Signaling Cascade in Agrobacterium tumefaciens , 2012, PLoS pathogens.

[52]  Marcus L. Roper,et al.  Quantitative Image Analysis and Modeling Indicate the Agrobacterium tumefaciens Type IV Secretion System Is Organized in a Periodic Pattern of Foci , 2012, PloS one.

[53]  V. Citovsky,et al.  The Role of the Ubiquitin-Proteasome System in Agrobacterium tumefaciens-Mediated Genetic Transformation of Plants1 , 2012, Plant Physiology.

[54]  Yuhong Tang,et al.  Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation. , 2012, The New phytologist.

[55]  K. Walldén,et al.  Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system , 2012, Proceedings of the National Academy of Sciences.

[56]  Yuqing Chen,et al.  Enterococcus faecalis PrgJ, a VirB4-Like ATPase, Mediates pCF10 Conjugative Transfer through Substrate Binding , 2012, Journal of bacteriology.

[57]  J. Schildbach,et al.  Assembly and mechanisms of bacterial type IV secretion machines , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[58]  Jianhua Zhang,et al.  AT14A mediates the cell wall–plasma membrane–cytoskeleton continuum in Arabidopsis thaliana cells , 2012, Journal of experimental botany.

[59]  Q. Jia,et al.  Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants , 2012 .

[60]  S. Gelvin Traversing the Cell: Agrobacterium T-DNA’s Journey to the Host Genome , 2012, Front. Plant Sci..

[61]  J. Glazebrook,et al.  An efficient Agrobacterium-mediated transient transformation of Arabidopsis. , 2012, The Plant journal : for cell and molecular biology.

[62]  Jay X. Tang,et al.  Surface contact stimulates the just‐in‐time deployment of bacterial adhesins , 2012, Molecular microbiology.

[63]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[64]  R. J. Frandsen,et al.  A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. , 2011, Journal of microbiological methods.

[65]  Prisca Viehoever,et al.  GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database , 2011, Nucleic Acids Res..

[66]  P. Zambryski,et al.  Membrane and Core Periplasmic Agrobacterium tumefaciens Virulence Type IV Secretion System Components Localize to Multiple Sites around the Bacterial Perimeter during Lateral Attachment to Plant Cells , 2011, mBio.

[67]  V. Citovsky,et al.  Agrobacterium Counteracts Host-Induced Degradation of Its Effector F-Box Protein , 2011, Science Signaling.

[68]  V. Citovsky,et al.  Extracellular VirB5 Enhances T-DNA Transfer from Agrobacterium to the Host Plant , 2011, PloS one.

[69]  E. Mullins,et al.  Production of Phytophthorainfestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14 , 2011, Transgenic Research.

[70]  A. Hills,et al.  A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis. , 2011, Plant, cell & environment.

[71]  G. Waksman,et al.  An Agrobacterium VirB10 Mutation Conferring a Type IV Secretion System Gating Defect , 2011, Journal of bacteriology.

[72]  G. Waksman,et al.  Structural insights into the membrane-extracted dimeric form of the ATPase TraB from the Escherichia coli pKM101 conjugation system , 2011, BMC Structural Biology.

[73]  G. Waksman,et al.  Molecular architecture of bacterial type IV secretion systems. , 2010, Trends in biochemical sciences.

[74]  F. Yasmin,et al.  Plant defense pathways subverted by Agrobacterium for genetic transformation , 2010, Plant signaling & behavior.

[75]  E. Lai,et al.  Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation. , 2010, Molecular plant pathology.

[76]  K. Walldén,et al.  Type IV secretion systems: versatility and diversity in function , 2010, Cellular microbiology.

[77]  Vitaly Citovsky,et al.  The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. , 2010, Molecular plant pathology.

[78]  S. Gelvin Plant proteins involved in Agrobacterium-mediated genetic transformation. , 2010, Annual review of phytopathology.

[79]  P. Christie,et al.  Evidence for VirB4-Mediated Dislocation of Membrane-Integrated VirB2 Pilin during Biogenesis of the Agrobacterium VirB/VirD4 Type IV Secretion System , 2010, Journal of bacteriology.

[80]  C. Baron,et al.  The Small Heat-shock Protein HspL Is a VirB8 Chaperone Promoting Type IV Secretion-mediated DNA Transfer* , 2010, The Journal of Biological Chemistry.

[81]  V. Citovsky,et al.  Agrobacterium induces expression of a host F-box protein required for tumorigenicity. , 2010, Cell host & microbe.

[82]  P. Zambryski,et al.  Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells , 2010, Proceedings of the National Academy of Sciences.

[83]  G. Waksman,et al.  Biochemical Dissection of the ATPase TraB, the VirB4 Homologue of the Escherichia coli pKM101 Conjugation Machinery , 2010, Journal of bacteriology.

[84]  S. Gelvin Finding a way to the nucleus. , 2010, Current opinion in microbiology.

[85]  C. Fuqua,et al.  Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. , 2009, Current opinion in microbiology.

[86]  P. Christie,et al.  Biological Diversity of Prokaryotic Type IV Secretion Systems , 2009, Microbiology and Molecular Biology Reviews.

[87]  Gabriel Waksman,et al.  Structure of the outer membrane complex of a type IV secretion system , 2009, Nature.

[88]  G. Waksman,et al.  The structural biology of type IV secretion systems , 2009, Nature Reviews Microbiology.

[89]  Kui Lin,et al.  Overexpression of Several Arabidopsis Histone Genes Increases Agrobacterium-Mediated Transformation and Transgene Expression in Plants[W] , 2009, The Plant Cell Online.

[90]  C. Baron,et al.  Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens , 2009, Microbiology.

[91]  A. Depicker,et al.  The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. , 2009, The Plant journal : for cell and molecular biology.

[92]  Rainer Hedrich,et al.  Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana[W] , 2009, The Plant Cell Online.

[93]  Mi Jung Kim,et al.  Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis , 2009, Plant Cell Reports.

[94]  G. Waksman,et al.  Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis , 2009, Molecular microbiology.

[95]  E. Orlova,et al.  Structure of a Type IV Secretion System Core Complex , 2009, Science.

[96]  S. Planchais,et al.  Efficient virus-induced gene silencing in Arabidopsis using a 'one-step' TYMV-derived vector. , 2008, The Plant journal : for cell and molecular biology.

[97]  S. Gelvin,et al.  Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells , 2008, Plant Methods.

[98]  V. Citovsky,et al.  Association of the Agrobacterium T-DNA–protein complex with plant nucleosomes , 2008, Proceedings of the National Academy of Sciences.

[99]  L. Gissot,et al.  Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. , 2008, The Plant journal : for cell and molecular biology.

[100]  Veena,et al.  IMPa-4, an Arabidopsis Importin α Isoform, Is Preferentially Involved in Agrobacterium-Mediated Plant Transformation[W] , 2008, The Plant Cell Online.

[101]  G. Waksman,et al.  VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? , 2008, Trends in microbiology.

[102]  Caixia Gao,et al.  Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment , 2008, Plant Cell Reports.

[103]  K. Minamisawa,et al.  Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. , 2008, The New phytologist.

[104]  G. Theißen,et al.  Germline transformation of Shepherd's purse (Capsella bursa-pastoris) by the 'floral dip' method as a tool for evolutionary and developmental biology. , 2008, Gene.

[105]  Hung-Yi Wu,et al.  Secretome Analysis Uncovers an Hcp-Family Protein Secreted via a Type VI Secretion System in Agrobacterium tumefaciens , 2008, Journal of bacteriology.

[106]  Lihuang Zhu,et al.  Pseudomonas syringae Effector AvrPto Blocks Innate Immunity by Targeting Receptor Kinases , 2008, Current Biology.

[107]  C. Baron,et al.  The Type IV Secretion System Component VirB5 Binds to the trans-Zeatin Biosynthetic Enzyme Tzs and Enables Its Translocation to the Cell Surface of Agrobacterium tumefaciens , 2007, Journal of bacteriology.

[108]  C. Hew,et al.  Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus , 2007, Proceedings of the National Academy of Sciences.

[109]  S. Gelvin,et al.  T-DNA Binary Vectors and Systems , 2007, Plant Physiology.

[110]  Kathleen F. Kerr,et al.  Transcriptome Profiling and Functional Analysis of Agrobacterium tumefaciens Reveals a General Conserved Response to Acidic Conditions (pH 5.5) and a Complex Acid-Mediated Signaling Involved in Agrobacterium-Plant Interactions , 2007, Journal of bacteriology.

[111]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): gene structure and function annotation , 2007, Nucleic Acids Res..

[112]  C. Baron,et al.  The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. , 2007, Microbiology.

[113]  Roland Hartig,et al.  Helicobacter exploits integrin for type IV secretion and kinase activation , 2007, Nature.

[114]  S. Gelvin,et al.  RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation , 2007, Proceedings of the National Academy of Sciences.

[115]  C. Hew,et al.  Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. , 2007, Molecular plant-microbe interactions : MPMI.

[116]  P. Zambryski,et al.  VirB1* Promotes T-Pilus Formation in the vir-Type IV Secretion System of Agrobacterium tumefaciens , 2007, Journal of bacteriology.

[117]  E. Nester,et al.  The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium , 2007, Proceedings of the National Academy of Sciences.

[118]  George R. Littlejohn,et al.  A generalized method for transfecting root epidermis uncovers endosomal dynamics in Arabidopsis root hairs. , 2007, The Plant journal : for cell and molecular biology.

[119]  S. Gelvin,et al.  Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. , 2007, Biochimica et biophysica acta.

[120]  Yuhong Tang,et al.  Arabidopsis VIRE2 INTERACTING PROTEIN2 Is Required for Agrobacterium T-DNA Integration in Plants[W] , 2007, The Plant Cell Online.

[121]  T. Tzfira,et al.  Biological systems of the host cell involved in Agrobacterium infection , 2007, Cellular microbiology.

[122]  K. Osakabe,et al.  Increased frequency of homologous recombination and T‐DNA integration in Arabidopsis CAF‐1 mutants , 2006, The EMBO journal.

[123]  Yong Li,et al.  GABI-Kat SimpleSearch: an Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions , 2006, Nucleic Acids Res..

[124]  A. Binns,et al.  Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. , 2006, Annual review of cell and developmental biology.

[125]  Rossana Henriques,et al.  Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method , 2006, Nature Protocols.

[126]  E. Lai,et al.  Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone , 2006, Proteomics.

[127]  Veena,et al.  Constitutive Expression Exposes Functional Redundancy between the Arabidopsis Histone H2A Gene HTA1 and Other H2A Gene Family Members[OA] , 2006, The Plant Cell Online.

[128]  Kathleen F. Kerr,et al.  The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. , 2006, Molecular plant-microbe interactions : MPMI.

[129]  T. Boller,et al.  Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation , 2006, Cell.

[130]  D. Lynn,et al.  The innate immunity of maize and the dynamic chemical strategies regulating two-component signal transduction in Agrobacterium tumefaciens. , 2006, ACS chemical biology.

[131]  A. Gontcharov,et al.  Agrobacterium‐mediated transformation of sea urchin embryos , 2006, Biotechnology journal.

[132]  E. Nester,et al.  Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[133]  T. Tzfira On tracks and locomotives: the long route of DNA to the nucleus. , 2006, Trends in microbiology.

[134]  A. Vainstein,et al.  Involvement of KU80 in T-DNA integration in plant cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[135]  E. Cascales,et al.  Biogenesis, architecture, and function of bacterial type IV secretion systems. , 2005, Annual review of microbiology.

[136]  Joseph Klafter,et al.  Nuclear localization signal peptides induce molecular delivery along microtubules. , 2005, Biophysical journal.

[137]  C. Fuqua,et al.  The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. , 2005, Molecular plant-microbe interactions : MPMI.

[138]  D. Wood,et al.  Phosphoenolpyruvate Carboxykinase Is an Acid-Induced, Chromosomally Encoded Virulence Factor in Agrobacterium tumefaciens , 2005, Journal of bacteriology.

[139]  A. Das,et al.  Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[140]  T. Tzfira,et al.  A versatile vector system for multiple gene expression in plants. , 2005, Trends in plant science.

[141]  T. Tzfira,et al.  The Plant VirE2 Interacting Protein 1. A Molecular Link between the Agrobacterium T-Complex and the Host Cell Chromatin?1 , 2005, Plant Physiology.

[142]  E. Cascales,et al.  Agrobacterium tumefaciens VirB9, an Outer-Membrane-Associated Component of a Type IV Secretion System, Regulates Substrate Selection and T-Pilus Biogenesis , 2005, Journal of bacteriology.

[143]  A. Ram,et al.  Agrobacterium-mediated transformation as a tool for functional genomics in fungi , 2005, Current Genetics.

[144]  Xiaoyan Yin,et al.  Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods , 2005, Euphytica.

[145]  T. Tzfira,et al.  Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[146]  R. Visser,et al.  Particle bombardment and the genetic enhancement of crops: myths and realities , 2005, Molecular Breeding.

[147]  R. Gao,et al.  Environmental pH Sensing: Resolving the VirA/VirG Two-Component System Inputs for Agrobacterium Pathogenesis , 2005, Journal of bacteriology.

[148]  R. Michelmore,et al.  Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. , 2005, Plant biotechnology journal.

[149]  W. A. Harwood,et al.  A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques , 2005, Plant Cell Reports.

[150]  Sarah Kaines,et al.  Gene transfer to plants by diverse species of bacteria , 2005, Nature.

[151]  T. Tzfira,et al.  The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation , 2005, The EMBO journal.

[152]  A. Vergunst,et al.  Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[153]  E. Cascales,et al.  Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[154]  E. Cascales,et al.  Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion , 2004, Molecular microbiology.

[155]  S. Gelvin,et al.  Plant Proteins That Interact with VirB2, the Agrobacterium tumefaciens Pilin Protein, Mediate Plant Transformationw⃞ , 2004, The Plant Cell Online.

[156]  A. Das,et al.  The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole , 2004, Molecular microbiology.

[157]  Thomas Altmann,et al.  Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. , 2004, Genome research.

[158]  T. Tzfira,et al.  Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium , 2004, Nature.

[159]  E. Cascales,et al.  Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. , 2004, Journal of molecular biology.

[160]  T. Tzfira,et al.  Agrobacterium T-DNA integration: molecules and models. , 2004, Trends in genetics : TIG.

[161]  A. Bacic,et al.  Characterization of the Arabidopsis Lysine-Rich Arabinogalactan-Protein AtAGP17 Mutant (rat1) That Results in a Decreased Efficiency of Agrobacterium Transformation1[w] , 2004, Plant Physiology.

[162]  Vitaly Citovsky,et al.  Protein Interactions Involved in Nuclear Import of the Agrobacterium VirE2 Protein in Vivo and in Vitro* , 2004, Journal of Biological Chemistry.

[163]  T Midtvedt,et al.  The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. , 2004, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[164]  D. Galbraith,et al.  Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles1 , 2004, Plant Physiology.

[165]  B. Hohn,et al.  Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T‐DNA complexes in mammalian cells , 2004, EMBO reports.

[166]  E. Cascales,et al.  Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate , 2004, Science.

[167]  T. Bisseling,et al.  RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. , 2004, Journal of experimental botany.

[168]  S. Bhattacharjee,et al.  Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[169]  A. Ram,et al.  Agrobacterium-Mediated Transformation of Aspergillus awamori in the Absence of Full-Length VirD2, VirC2, or VirE2 Leads to Insertion of Aberrant T-DNA Structures , 2004, Journal of bacteriology.

[170]  L. Herrera-Estrella,et al.  Improving transformation efficiency ofArabidopsis thaliana by modifying the floral dip method , 2004, Plant Molecular Biology Reporter.

[171]  V. S. Reddy,et al.  Genetic transformation of the green alga: Chlamydomonas reinhardtii by Agrobacterium tumefaciens , 2004 .

[172]  S. C. Winans,et al.  Signal quenching, detoxification and mineralization of vir gene‐inducing phenolics by the VirH2 protein of Agrobacterium tumefaciens , 2004, Molecular microbiology.

[173]  H. Shou,et al.  Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation , 2004, Molecular Breeding.

[174]  N. Carpita,et al.  Agrobacterium-Mediated Root Transformation Is Inhibited by Mutation of an Arabidopsis Cellulose Synthase-Like Gene1 , 2003, Plant Physiology.

[175]  A. Vergunst,et al.  Recognition of the Agrobacterium tumefaciens VirE2 Translocation Signal by the VirB/D4 Transport System Does Not Require VirE11 , 2003, Plant Physiology.

[176]  M. Gallego,et al.  Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. , 2003, The Plant journal : for cell and molecular biology.

[177]  W. Wang,et al.  Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants , 2003, Plant Cell Reports.

[178]  M. Umeda,et al.  The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[179]  R. Voisin,et al.  The Endosperm and the Embryo of Arabidopsis thaliana are Independently Transformed through Infiltration by Agrobacterium tumefaciens , 2003, Transgenic Research.

[180]  M. Schmid,et al.  Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana , 2003, Science.

[181]  H. van Attikum,et al.  The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. , 2003, Nucleic acids research.

[182]  S. He,et al.  A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[183]  Veena,et al.  Identification of Arabidopsis rat Mutants , 2003, Plant Physiology.

[184]  J. Friesner,et al.  Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. , 2003, The Plant journal : for cell and molecular biology.

[185]  P. Christie,et al.  Agrobacterium tumefaciens VirB6 Protein Participates in Formation of VirB7 and VirB9 Complexes Required for Type IV Secretion , 2003, Journal of bacteriology.

[186]  Jonathan D. G. Jones,et al.  ATIDB: Arabidopsis thaliana insertion database. , 2003, Nucleic acids research.

[187]  A. Vergunst,et al.  Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. , 2003, Nucleic acids research.

[188]  M. Van Montagu,et al.  Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells , 2003, Planta.

[189]  K. Mysore,et al.  Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. , 2002, The Plant journal : for cell and molecular biology.

[190]  S. Rhee,et al.  TAIR: a resource for integrated Arabidopsis data , 2002, Functional & Integrative Genomics.

[191]  Trevor C. Charles,et al.  A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[192]  C. Baron,et al.  Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[193]  T. Tzfira,et al.  Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[194]  C. Kado,et al.  Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. , 2002, Molecular plant pathology.

[195]  Jonathan D. G. Jones,et al.  GARNet, the Genomic Arabidopsis Resource Network. , 2002, Trends in plant science.

[196]  C. Kado,et al.  Biogenesis of T Pili in Agrobacterium tumefaciens Requires Precise VirB2 Propilin Cleavage and Cyclization , 2002, Journal of bacteriology.

[197]  S. Hapfelmeier,et al.  Elevated Temperature Differentially Affects Virulence, VirB Protein Accumulation, and T-Pilus Formation in Different Agrobacterium tumefaciens andAgrobacterium vitis Strains , 2001, Journal of bacteriology.

[198]  H. van Attikum,et al.  Non‐homologous end‐joining proteins are required for Agrobacterium T‐DNA integration , 2001, The EMBO journal.

[199]  P. Christie,et al.  Role of Agrobacterium VirB11 ATPase in T-Pilus Assembly and Substrate Selection , 2001, Journal of bacteriology.

[200]  T. Tzfira,et al.  VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity , 2001, The EMBO journal.

[201]  A. Das,et al.  Functional Analysis of the Agrobacterium tumefaciens T-DNA Transport Pore Protein VirB8 , 2001, Journal of bacteriology.

[202]  B. Tague Germ-line transformation of Arabidopsis lasiocarpa , 2001, Transgenic Research.

[203]  H. Nam,et al.  Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method – plant development and surfactant are important in optimizing transformation efficiency , 2001, Transgenic Research.

[204]  W. Crosby,et al.  Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein , 2001, Current Biology.

[205]  T. Tzfira,et al.  Genetic transformation of HeLa cells by Agrobacterium. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[206]  A. Bent Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. , 2000, Plant physiology.

[207]  B. Sangwan-Norreel,et al.  Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. , 2000, Journal of experimental botany.

[208]  D. Ware,et al.  Seed and molecular resources for Arabidopsis. , 2000, Plant physiology.

[209]  A. Vergunst,et al.  VirB/D4-dependent protein translocation from Agrobacterium into plant cells. , 2000, Science.

[210]  S. Clough,et al.  A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. , 2000, Molecular plant-microbe interactions : MPMI.

[211]  R. Hellens,et al.  Technical Focus:a guide to Agrobacterium binary Ti vectors. , 2000, Trends in plant science.

[212]  B. Hohn,et al.  Plant Enzymes but Not AgrobacteriumVirD2 Mediate T-DNA Ligation In Vitro , 2000, Molecular and Cellular Biology.

[213]  J. Sanford The development of the biolistic process , 2000, In Vitro Cellular & Developmental Biology - Plant.

[214]  L. Boone,et al.  At the maize/Agrobacterium interface: natural factors limiting host transformation. , 2000, Chemistry & biology.

[215]  R. Voisin,et al.  The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. , 2000, Genetics.

[216]  C. Kado,et al.  The T-pilus of Agrobacterium tumefaciens. , 2000, Trends in microbiology.

[217]  S. Clough,et al.  Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. , 2000, Plant physiology.

[218]  C. Baron,et al.  The N- and C-Terminal Portions of theAgrobacterium VirB1 Protein Independently Enhance Tumorigenesis , 2000, Journal of bacteriology.

[219]  D. Weigel,et al.  Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. , 2000, The Plant journal : for cell and molecular biology.

[220]  M. Van Montagu,et al.  Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. , 2000, Molecular plant-microbe interactions : MPMI.

[221]  A. Das,et al.  Subcellular localization of the Agrobacterium tumefaciens T‐DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore , 2000, Molecular microbiology.

[222]  K. Mysore,et al.  An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[223]  C. Baron,et al.  Vir Proteins Stabilize VirB5 and Mediate Its Association with the T Pilus of Agrobacterium tumefaciens , 1999, Journal of bacteriology.

[224]  S. C. Winans,et al.  The phenolic vir gene inducer ferulic acid is O‐demethylated by the VirH2 protein of an Agrobacterium tumefaciens Ti plasmid , 1999, Molecular microbiology.

[225]  E Lanka,et al.  Conjugative Pili of IncP Plasmids, and the Ti Plasmid T Pilus Are Composed of Cyclic Subunits* , 1999, The Journal of Biological Chemistry.

[226]  M. Hinchee,et al.  Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. , 1999, The Plant journal : for cell and molecular biology.

[227]  K. Mysore,et al.  Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium , 1999, Molecular and General Genetics MGG.

[228]  H. Y. Steensma,et al.  T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis , 1999, Molecular and General Genetics MGG.

[229]  L. Banta,et al.  Stability of the Agrobacterium tumefaciens VirB10 Protein Is Modulated by Growth Temperature and Periplasmic Osmoadaption , 1998, Journal of bacteriology.

[230]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[231]  K. Mysore,et al.  Agrobacterium tumefaciens transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvh1 and rad5. , 1998, Molecular plant-microbe interactions : MPMI.

[232]  P. Hooykaas,et al.  Agrobacterium tumefaciens-mediated transformation of filamentous fungi , 1998, Nature Biotechnology.

[233]  G. A. de la Riva,et al.  Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation , 1998, Planta.

[234]  N. Darbinian,et al.  Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. , 1998, Molecular plant-microbe interactions : MPMI.

[235]  T. Metcalfe,et al.  Agrobacterium VirD2 protein interacts with plant host cyclophilins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[236]  M. Van Montagu,et al.  Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts. , 1998, Molecular plant-microbe interactions : MPMI.

[237]  C. Kado,et al.  Processed VirB2 Is the Major Subunit of the Promiscuous Pilus of Agrobacterium tumefaciens , 1998, Journal of bacteriology.

[238]  L. Yao,et al.  IN PLANTA TRANSFORMATION OF PAKCHOI (BRASSICA CAMPESTRIS L. SSP. CHINENSIS) BY INFILTRATION OF ADULT PLANTS WITH AGROBACTERIUM , 1998 .

[239]  J. Putterill,et al.  T-DNA tagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis , 1998 .

[240]  M. Chilton,et al.  T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[241]  V. Citovsky,et al.  Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[242]  P. Christie,et al.  Suppression of mutant phenotypes of the Agrobacterium tumefaciens VirB11 ATPase by overproduction of VirB proteins , 1997, Journal of bacteriology.

[243]  S. Gelvin,et al.  Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. , 1997, The Plant cell.

[244]  C. Baron,et al.  VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1 , 1997, Journal of bacteriology.

[245]  C. Chang,et al.  Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene , 1996, Journal of bacteriology.

[246]  D. Somers,et al.  Transgene inheritance in plants genetically engineered by microprojectile bombardment , 1996, Molecular biotechnology.

[247]  E. Koonin,et al.  A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[248]  E. Nester,et al.  Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens , 1996, Journal of bacteriology.

[249]  K. Stephens,et al.  Agrobacterium tumefaciens-mediated transformation of yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[250]  E. Nester,et al.  Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens , 1996, Journal of bacteriology.

[251]  B. Hohn,et al.  Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[252]  E. Nester,et al.  Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[253]  P. Hooykaas,et al.  Trans‐kingdom T‐DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. , 1995, The EMBO journal.

[254]  B. Hohn,et al.  The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T‐DNA into the plant genome. , 1995, The EMBO journal.

[255]  K. Stephens,et al.  An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA , 1994, Molecular and General Genetics MGG.

[256]  D. Reed,et al.  In planta transformation of Arabidopsis thaliana , 1994, Molecular and General Genetics MGG.

[257]  W. Frommer,et al.  Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement , 1994, Plant Cell Reports.

[258]  H. Nam,et al.  Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta , 1994 .

[259]  R. Bressan,et al.  A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1 alpha. , 1994, The Plant cell.

[260]  L. Kovács,et al.  Mapping and genetic organization of pTiChry5, a novel Ti plasmid from a highly virulent Agrobacterium tumefaciens strain , 1994, Molecular and General Genetics MGG.

[261]  N. Shimoda,et al.  Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. , 1993, The Journal of biological chemistry.

[262]  C. Grevelding,et al.  Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs , 1993, Plant Molecular Biology.

[263]  Xiaodan Yu,et al.  Sustained root culture for generation and vegetative propagation of transgenic Arabidopsis thaliana , 1993, Plant Cell Reports.

[264]  Elizabeth E. Hood,et al.  NewAgrobacterium helper plasmids for gene transfer to plants , 1993, Transgenic Research.

[265]  P. Hooykaas,et al.  Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens , 1993, Nature.

[266]  N. Carpita,et al.  Enrichment of vitronectin- and fibronectin-like proteins in NaCI-adapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. , 1993, The Plant journal : for cell and molecular biology.

[267]  S. Filichkin,et al.  Formation of a putative relaxation intermediate during T‐DNA processing directed by the Agrobacterium tumefaciens VirD1, D2 endonuclease , 1993, Molecular microbiology.

[268]  P. Christie,et al.  The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain , 1993, Journal of bacteriology.

[269]  L. Hodges,et al.  A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[270]  K. Okada,et al.  Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains , 1992, Plant Cell Reports.

[271]  Hong Ma,et al.  An improved procedure for transformingArabidopsis thaliana (Landsbergerecta) root explant , 1992, Plant Molecular Biology Reporter.

[272]  Spencer Brown,et al.  Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana , 1992, Planta.

[273]  R. Joerger,et al.  Mechanism of activation of Agrobacterium virulence genes: identification of phenol-binding proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[274]  A. Matthysse,et al.  Involvement of a vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells , 1992, Journal of bacteriology.

[275]  K. Lindsey,et al.  High-frequency transformation ofArabidopsis thaliana byAgrobacterium tumefaciens , 1992, Plant Molecular Biology Reporter.

[276]  C. Grevelding,et al.  Improved method for the transformation of Arabidopsis thaliana with chimeric dihydrofolate reductase constructs which confer methotrexate resistance , 1992, Plant Cell Reports.

[277]  S. C. Winans,et al.  The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli , 1992, Journal of bacteriology.

[278]  B. Sangwan-Norreel,et al.  Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency , 1991, Molecular and General Genetics MGG.

[279]  R. A. Ludwig,et al.  A DNA Transformation–Competent Arabidopsis Genomic Library in Agrobacterium , 1991, Bio/Technology.

[280]  E. Nester,et al.  Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides , 1990, Journal of bacteriology.

[281]  T. Roitsch,et al.  Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG , 1990, Journal of bacteriology.

[282]  M. Paulsson,et al.  Vitronectin and type-I collagen binding by Staphylococcus aureus and coagulase-negative staphylococci. , 1990, FEMS microbiology immunology.

[283]  R. Schilperoort,et al.  Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus , 1990, Plant Molecular Biology.

[284]  K. Mcbride,et al.  Improved binary vectors for Agrobacterium-mediated plant transformation , 1990, Plant Molecular Biology.

[285]  T. Roitsch,et al.  The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes , 1990, Journal of bacteriology.

[286]  T. Roitsch,et al.  The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation , 1990, Journal of bacteriology.

[287]  A. Crameri,et al.  Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[288]  M. Gordon,et al.  A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[289]  P. Zambryski,et al.  Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: Tight association of VirD2 with the 5' ends of T-strands. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[290]  R. Kerstetter,et al.  Nucleotide sequence and analysis of the plant-inducible locus pinF from Agrobacterium tumefaciens , 1989, Journal of bacteriology.

[291]  Role for Agrobacterium tumefaciens ChvA Protein in Export of β-1,2-Glucan , 1989 .

[292]  J. Leigh,et al.  Role for [corrected] Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan , 1989, Journal of bacteriology.

[293]  M. Van Montagu,et al.  VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA–protein complex at the 5′ terminus of T‐strand molecules. , 1988, The EMBO journal.

[294]  E. Ward,et al.  VirD2 Protein of Agrobacterium tumefaciens Very Tightly Linked to the 5' End of T-Strand DNA , 1988, Science.

[295]  M. Van Montagu,et al.  Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[296]  E. Nester,et al.  Association of the virD2 protein with the 5' end of T strands in Agrobacterium tumefaciens , 1988, Journal of bacteriology.

[297]  R. O. Morris,et al.  Inducible expression of cytokinin biosynthesis in Agrobacterium tumefaciens by plant phenolics. , 1988, Molecular plant-microbe interactions : MPMI.

[298]  R. Ugalde,et al.  Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. , 1988, Molecular plant-microbe interactions : MPMI.

[299]  J. Slightom,et al.  Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens , 1987, Journal of bacteriology.

[300]  D. Regier,et al.  Cytokinin production by Agrobacterium and Pseudomonas spp , 1987, Journal of bacteriology.

[301]  D. Weeks,et al.  Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens , 1987, Plant Molecular Biology.

[302]  M. Thomashow,et al.  Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment , 1987, Journal of bacteriology.

[303]  K. Feldmann,et al.  Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach , 1987, Molecular and General Genetics MGG.

[304]  P. Zambryski,et al.  Activation of Agrobacterium tumefaciens vir gene expression generates multiple single‐stranded T‐strand molecules from the pTiA6 T‐region: requirement for 5′ virD gene products. , 1987, The EMBO journal.

[305]  L. M. Albright,et al.  Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA , 1987, Journal of bacteriology.

[306]  M. Van Montagu,et al.  Site-Specific Nick in the T-DNA Border Sequence as a Result of Agrobacterium vir Gene Expression , 1987, Science.

[307]  A. Matthysse Characterization of nonattaching mutants of Agrobacterium tumefaciens , 1987, Journal of bacteriology.

[308]  M. Chilton,et al.  The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA , 1986, Journal of bacteriology.

[309]  P. Zambryski,et al.  Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells , 1986, Nature.

[310]  R. Horsch,et al.  Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens , 1986, Science.

[311]  E. Nester,et al.  Molecular characterization of a host-range-determining locus from Agrobacterium tumefaciens , 1986, Journal of bacteriology.

[312]  C. Koncz,et al.  The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector , 1986, Molecular and General Genetics MGG.

[313]  H. Uchimiya,et al.  Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L.) , 1986, Molecular and General Genetics MGG.

[314]  R. O. Morris,et al.  Tzs, a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with trans-zeatin biosynthesis , 1986, Molecular and General Genetics MGG.

[315]  Marc Van Montagu,et al.  Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens , 1985, Nature.

[316]  L. Pearson,et al.  The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. , 1985, Journal of general microbiology.

[317]  Kathleen Y. Lee,et al.  A chimaeric hygromycin resistance gene as a selectable marker in plant cells , 1985, Plant Molecular Biology.

[318]  V. Walbot,et al.  Expression of genes transferred into monocot and dicot plant cells by electroporation. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[319]  Marc Van Montagu,et al.  Efficient octopine Ti plasmid-derived vectors for Agrobacterium- mediated gene transfer to plants , 1985, Nucleic Acids Res..

[320]  D. Regier,et al.  Cloning and nucleotide sequence of the tzs gene from Agrobacterium tumefaciens strain T37. , 1985, Nucleic acids research.

[321]  C. Douglas,et al.  Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures , 1985, Journal of bacteriology.

[322]  M. Bevan,et al.  Binary Agrobacterium vectors for plant transformation. , 1984, Nucleic acids research.

[323]  M. Van Montagu,et al.  Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity , 1983, The EMBO journal.

[324]  A. Matthysse Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection , 1983, Journal of bacteriology.

[325]  P. Hirsch,et al.  A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid , 1983, Nature.

[326]  Kenneth A. Barton,et al.  Mini–Ti: A New Vector Strategy for Plant Genetic Engineering , 1983, Bio/Technology.

[327]  M. Chilton,et al.  Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny , 1983, Cell.

[328]  C. Douglas,et al.  Agrobacterium tumefaciens mutants affected in attachment to plant cells , 1982, Journal of bacteriology.

[329]  K. Holmes,et al.  Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells , 1981, Journal of bacteriology.

[330]  D. Inzé,et al.  The functional organization of the nopaline A. tumefaciens plasmid pTiC58. , 1980, Plasmid.

[331]  C. Kado,et al.  Studies on Agrobacterium tumefaciens. VIII. Avirulence induced by temperature and ethidium bromide. , 1977, Canadian journal of microbiology.

[332]  J. Ley,et al.  The host range of crown gall , 1976, The Botanical Review.

[333]  M. Chilton,et al.  Plasmid required for virulence of Agrobacterium tumefaciens , 1975, Journal of bacteriology.

[334]  A. Kerr Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter , 1971 .

[335]  R. H. Hamilton,et al.  The loss of tumor-initiating ability inAgrobacterium tumefaciens by incubation at high temperature , 1971, Experientia.

[336]  Silvina Mangano,et al.  Agrobacterium tumefaciens-mediated transient transformation of Arabidopsis thaliana leaves. , 2014, Methods in molecular biology.

[337]  E. Grotewold,et al.  Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. , 2014, Methods in molecular biology.

[338]  Leonore Reiser,et al.  Arabidopsis database and stock resources. , 2014, Methods in molecular biology.

[339]  S. Gelvin,et al.  Is VIP 1 important for Agrobacterium-mediated transformation ? , 2014 .

[340]  Plant Methods BioMed Central Methodology , 2009 .

[341]  C. Steber,et al.  Floral transformation of wheat. , 2009, Methods in molecular biology.

[342]  C. Sparks,et al.  Transient transformation of plants. , 2009, Methods in molecular biology.

[343]  C. Steber,et al.  GENETIC TRANSFORMATION AND HYBRIDIZATION Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens , 2009 .

[344]  L. Banta,et al.  Agrobacterium and Plant Biotechnology , 2008 .

[345]  R. Gao,et al.  Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. , 2008, Advances in experimental medicine and biology.

[346]  L. Blanco,et al.  Trojan Horse Strategy in Agrobacterium Transformation : Abusing MAPK Defense Signaling , 2007 .

[347]  Yuhong Tang,et al.  Salicylic acid and systemic acquired resistance play a role in attenuating 1 crown gall disease caused by Agrobacterium tumefaciens , 2007 .

[348]  A. Bent Arabidopsis thaliana floral dip transformation method. , 2006, Methods in molecular biology.

[349]  S. Gelvin Agrobacterium Transformation of Arabidopsis thaliana Roots , 2006 .

[350]  J. Mantis,et al.  In planta Agrobacterium-mediated transformation by vacuum infiltration. , 2006, Methods in molecular biology.

[351]  Toshihiko Komari,et al.  Binary vectors and super-binary vectors. , 2006, Methods in molecular biology.

[352]  A. Vainstein,et al.  A case of promiscuity: Agrobacterium's endless hunt for new partners. , 2006, Trends in genetics : TIG.

[353]  B. Reisch,et al.  Stable transformation of plant cells by particle bombardment/biolistics. , 2005, Methods in molecular biology.

[354]  L. Herrera-Estrella,et al.  Transgenic plants: an historical perspective. , 2005, Methods in molecular biology.

[355]  P. Hooykaas Transformation Mediated by Agrobacterium tumefaciens , 2004 .

[356]  R. Verpoorte,et al.  Gene transfer and expression in plants. , 2004, Methods in molecular biology.

[357]  J. Alonso,et al.  T-DNA mutagenesis in Arabidopsis. , 2003, Methods in molecular biology.

[358]  Jungwon Yoon,et al.  The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community , 2003, Nucleic Acids Res..

[359]  Wen Huang,et al.  The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant , 2001, Nucleic Acids Res..

[360]  K. Mysore,et al.  Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. , 2000, The Plant journal : for cell and molecular biology.

[361]  M. Chung,et al.  Floral spray transformation can efficiently generate Arabidopsis transgenic plants. , 2000, Transgenic research.

[362]  A. Vergunst,et al.  Root transformation by Agrobacterium tumefaciens. , 1998, Methods in molecular biology.

[363]  Godelieve Gheysen,et al.  Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications , 1998 .

[364]  G. Pelletier,et al.  In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. , 1998, Methods in molecular biology.

[365]  B. Hohn,et al.  The omega sequence of VirD2 is important but not essential for efficient transfer of T-DNA by Agrobacterium tumefaciens. , 1998, Molecular plant-microbe interactions : MPMI.

[366]  M. Van Montagu,et al.  T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. , 1997, The Plant journal : for cell and molecular biology.

[367]  E. Nester,et al.  The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. , 1996, Gene.

[368]  C. Koncz,et al.  Homology Recognition During T-DNA Integration into the Plant Genome , 1994 .

[369]  J. Ellis,et al.  In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants , 1993 .

[370]  J. Handelsman,et al.  chvA locus may be involved in export of neutral cyclic beta-1,2-linked D-glucan from Agrobacterium tumefaciens. , 1989, Molecular plant-microbe interactions : MPMI.

[371]  H. Lörz,et al.  Transgenic rye plants obtained by injecting DNA into young floral tillers , 1987, Nature.

[372]  V. Walbot,et al.  Stable transformation of maize after gene transfer by electroporation , 1986, Nature.

[373]  P. Hooykaas,et al.  Octopine Ti-plasmid deletion mutants of agrobacterium tumefaciens with emphasis on the right side of the T-region. , 1982, Plasmid.