Some recent issues in computational failure mechanics

An overview is given of some recent developments in computational modelling of localization and failure phenomena in solids. Cohesive‐zone models are considered as well as enrichment of continua using gradients in space and in time. The latter models are applied to static instabilities as well as to propagative instabilities. The determination of the additional parameters that emerge in gradient continua is treated and attention is paid to the spatial resolution that is necessary to properly capture bands of localized deformation. Finally, the impact is considered which imperfection patterns may have on the failure mode. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  J. Hadamard,et al.  Leçons sur la propagation des ondes et les equations de l'hydrodynamique , 2015 .

[2]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[3]  R. de Borst,et al.  Some observations on embedded discontinuity models , 2001 .

[4]  Mgd Marc Geers,et al.  Gradient‐enhanced damage modelling of high‐cycle fatigue , 2000 .

[5]  Jerzy Pamin,et al.  Dispersion analysis and element‐free Galerkin solutions of second‐ and fourth‐order gradient‐enhanced damage models , 2000 .

[6]  Harm Askes,et al.  Advanced spatial discretisation strategies for localised failure : mesh adaptivity and meshless methods : proefschrift , 2000 .

[7]  Mgd Marc Geers,et al.  On coupled gradient-dependent plasticity and damage theories with a view to localization analysis , 1999 .

[8]  Franz-Josef Ulm,et al.  Chemoporoplasticity of Calcium Leaching in Concrete , 1999 .

[9]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[10]  Mgd Marc Geers,et al.  Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene , 1999 .

[11]  R. de Borst,et al.  Numerical analysis of localization using a viscoplastic regularization: influence of stochastic material defects , 1999 .

[12]  L. J. Sluys,et al.  Discontinuous failure analysis for mode-I and mode-II localization problems , 1998 .

[13]  Rhj Ron Peerlings,et al.  Gradient‐enhanced damage modelling of concrete fracture , 1998 .

[14]  L. J. Sluys,et al.  ALE analyses of localization in wave propagation problems , 1998 .

[15]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[16]  L. J. Sluys,et al.  Viscoplasticity for instabilities due to strain softening and strain‐rate softening , 1997 .

[17]  Wei Min Wang,et al.  Stationary and Propagative Instabilities in Metals: A Computational Point of View , 1997 .

[18]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[19]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[20]  S. Pietruszczak,et al.  Numerical analysis of concrete structures subjected to alkali‐aggregate reaction , 1996 .

[21]  D Dries Hegen,et al.  Element-free Galerkin methods in combination with finite element approaches , 1996 .

[22]  D. Borst,et al.  Failure in plain and reinforced concrete : an analysis of crack width and crack spacing , 1996 .

[23]  Jerzy Pamin,et al.  Some novel developments in finite element procedures for gradient-dependent plasticity , 1996 .

[24]  L. J. Sluys,et al.  On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials , 1995 .

[25]  René de Borst,et al.  Some observations on element performance in isochoric and dilatant plastic flow , 1995 .

[26]  D. Borst,et al.  A plasticity model and algorithm for mode-I cracking in concrete , 1995 .

[27]  Sumio Murakami,et al.  Mesh-Dependence in Local Approach to Creep Fracture , 1995 .

[28]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[29]  P. Benson Shing,et al.  Embedded representation of fracture in concrete with mixed finite elements , 1995 .

[30]  de R René Borst,et al.  Stochastic approaches for damage evolution in standard and non-standard continua , 1995 .

[31]  J. Pamin,et al.  Gradient-dependent plasticity in numerical simulation of localization phenomena , 1994 .

[32]  Ted Belytschko,et al.  On the dynamics and the role of imperfections for localization in thermo-viscoplastic materials , 1994 .

[33]  Erik Schlangen,et al.  Analyses of anchor pull-out in concrete , 1994 .

[34]  David R. Owen,et al.  On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua , 1994 .

[35]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[36]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[37]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[38]  Kenneth Runesson,et al.  Discontinuous Displacement Approximation for Capturing Plastic Localization , 1993 .

[39]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[40]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[41]  J. Schellekens,et al.  Computational strategies for composite structures , 1992 .

[42]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[43]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[44]  O. C. Zienkiewicz,et al.  A note on localization phenomena and adaptive finite‐element analysis in forming processes , 1990 .

[45]  Jan G. Rots,et al.  Occurrence of spurious mechanisms in computations of strain‐softening solids , 1989 .

[46]  T. Belytschko,et al.  A finite element with embedded localization zones , 1988 .

[47]  Ted Belytschko,et al.  Transient solutions for one-dimensional problems with strain softening , 1987 .

[48]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[49]  M. Ortiz,et al.  A finite element method for localized failure analysis , 1987 .

[50]  Z. Bažant Mechanics of Distributed Cracking , 1986 .

[51]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[52]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[53]  Zenon Mróz,et al.  Finite element analysis of deformation of strain‐softening materials , 1981 .

[54]  Jean Lemaitre,et al.  Application of Damage Concepts to Predict Creep-Fatigue Failures , 1979 .

[55]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[56]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[57]  J. Rice Localization of plastic deformation , 1976 .

[58]  R. Bellman,et al.  Plastic Flow and Fracture in Solids , 1962 .

[59]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[60]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .

[61]  W. T. Koiter Over de stabiliteit van het elastisch evenwicht , 1945 .

[62]  N.,et al.  A PHENOMENOLOGICAL THEORY FOR STRAIN GRADIENT EFFECTS IN PLASTICITY , 2002 .

[63]  E. Aifantis Strain gradient interpretation of size effects , 1999 .

[64]  John W. Hutchinson,et al.  Models of Interface Separation Accompanied by Plastic Dissipation at Multiple Scales , 1999 .

[65]  M. A. Gutiérrez,et al.  Deterministic and stochastic analysis of size effects and damage evolution in quasi-brittle materials , 1999 .

[66]  Rhj Ron Peerlings Enhanced damage modelling for fracture and fatigue , 1999 .

[67]  René de Borst,et al.  A unified framework for concrete damage and fracture models including size effects , 1999 .

[68]  Miguel Angel,et al.  Objective simulation of failure in heterogeneous softening solids : the use of stochastic imperfections in localisation analysis , 1999 .

[69]  Kenneth Runesson,et al.  A thermodynamically consistent theory of gradient-regularized plasticity coupled to damage , 1997 .

[70]  Mgd Marc Geers,et al.  Experimental analysis and computational modelling of damage and fracture , 1997 .

[71]  Rhj Ron Peerlings,et al.  Some observations on localisation in non-local and gradient damage models , 1996 .

[72]  B. Karihaloo Fracture mechanics and structural concrete , 1995 .

[73]  D A Lott-Crumpler,et al.  On the dynamics and the role of imperfections for localization in thermo-viscoplastic materials , 1994 .

[74]  de R René Borst,et al.  Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach , 1994 .

[75]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[76]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[77]  R. de Borst,et al.  Analysis of concrete fracture in “direct” tension , 1989 .

[78]  J. Chaboche,et al.  On the creep crack-growth prediction by a non local damage formulation , 1989 .

[79]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[80]  R. Borst Computation of post-bifurcation and post-failure behavior of strain-softening solids , 1987 .

[81]  Raymond J. Krizek,et al.  Endochronic Constitutive Law for Liquefaction of Sand , 1976 .

[82]  J. Mandel Conditions de Stabilité et Postulat de Drucker , 1966 .

[83]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[84]  Zdenik P Baiant,et al.  Mechanics of distributed cracking , 2022 .