Efficiency of automata in semi-commutation verification techniques

Computing the image of a regular language by the transitive closure of a relation is a central question in Regular Model Checking. In a recent paper Bouajjani, Muscholl and Touili \cite{Anca} proved that the class of regular languages L -- called APC -- of the form of a union of L{0,j}L{1,j}L{2,j}... L{k_j,j}$, where the union is finite and each L{i,j} is either a single symbol or a language of the form B* with B a subset of the alphabet, is closed under all semi-commutation relations R. Moreover a recursive algorithm on the regular expressions was given to compute R*(L). This paper provides a new approach, based on automata, for the same problem. Our approach produces a simpler and more efficient algorithm which furthermore works for a larger class of regular languages closed under union, intersection, semi-commutation relations and conjugacy. The existence of this new class, PolC, answers the open question proposed in the paper of Bouajjani and al.

[1]  Philippe Schnoebelen,et al.  The regular viewpoint on PA-processes , 1998, Theor. Comput. Sci..

[2]  Jean-François Perrot Varietes de Langages et Operations , 1978, Theor. Comput. Sci..

[3]  Gérard Cécé,et al.  Clôtures transitives de semi-commutations et model-checking régulier , 2008, Tech. Sci. Informatiques.

[4]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[5]  Yves Métivier,et al.  Partial Commutation and Traces , 1997, Handbook of Formal Languages.

[6]  M. W. Shields An Introduction to Automata Theory , 1988 .

[7]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[8]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[9]  Tayssir Touili Regular Model Checking using Widening Techniques , 2001, Electron. Notes Theor. Comput. Sci..

[10]  Anca Muscholl,et al.  Permutation rewriting and algorithmic verification , 2007, Inf. Comput..

[11]  Pierre Wolper,et al.  Verifying Systems with Infinite but Regular State Spaces , 1998, CAV.

[12]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[13]  Jean-Éric Pin,et al.  Shuffle on positive varieties of languages , 2004, Theor. Comput. Sci..

[14]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs , 1999, Formal Methods Syst. Des..

[15]  Philippe Schnoebelen,et al.  The regular viewpoint on PA-processes , 2002, Theor. Comput. Sci..

[16]  Parosh Aziz Abdulla,et al.  Symbolic Verification of Lossy Channel Systems: Application to the Bounded Retransmission Protocol , 1999, TACAS.

[17]  Jean-Éric Pin,et al.  On a Conjecture of Schnoebelen , 2003, Developments in Language Theory.

[18]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[19]  Pierre Wolper,et al.  A partial approach to model checking , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[20]  Janusz A. Brzozowski,et al.  Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..

[21]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[22]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[23]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[24]  Parosh Aziz Abdulla,et al.  On-the-Fly Analysis of Systems with Unbounded, Lossy FIFO Channels , 1998, CAV.

[25]  Zoltán Ésik,et al.  Modeling Literal Morphisms by Shuffle , 1998 .

[26]  Antonio Restivo,et al.  On the Trace Product and some Families of Languages Closed under Partial Commutations , 2004, J. Autom. Lang. Comb..

[27]  Pierre-Cyrille Héam Some complexity results for polynomial rational expressions , 2003, Theor. Comput. Sci..

[28]  Parosh Aziz Abdulla,et al.  Algorithmic Improvements in Regular Model Checking , 2003, CAV.