Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system

Abstract The Vlasov–Poisson system, modeling the evolution of non-collisional plasmas in the electrostatic limit, is approximated by a semi-Lagrangian technique. Spectral methods of periodic type are implemented through a collocation approach. Groups of particles are represented by the Fourier Lagrangian basis and evolve, for a single timestep, along a high-order accurate representation of the local characteristic lines. The time-advancing technique is based on truncated Taylor series that can be, in principle, of any order of accuracy. A variant is obtained by coupling the phase space discretization with high-order accurate Backward Differentiation Formulas (BDF). At each timestep, particle displacements are reinterpolated and expressed in the original basis to guarantee the order of accuracy in all the variables at relatively low costs. Thus, these techniques combine the excellent features of spectral approximations with high-order time integration. The resulting method has excellent conservation properties. Indeed, it can be proven that the total number of particles, proportional to the total mass and charge, is conserved up to the machine precision. Series of numerical experiments are performed in order to assess the real performance. In particular, comparisons with standard benchmarks are examined.

[1]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[2]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[3]  Stephen Wollman,et al.  Numerical Approximation of the One-Dimensional Vlasov--Poisson System with Periodic Boundary Conditions , 1996 .

[4]  Gianmarco Manzini,et al.  Convergence of Spectral Discretizations of the Vlasov-Poisson System , 2016, SIAM J. Numer. Anal..

[5]  Paul J. Dellar,et al.  Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit , 2014, Journal of Plasma Physics.

[6]  Yingda Cheng,et al.  Numerical study of the two-species Vlasov-Ampère system: Energy-conserving schemes and the current-driven ion-acoustic instability , 2014, J. Comput. Phys..

[7]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[8]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[9]  José A. Carrillo,et al.  Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..

[10]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[11]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[12]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[13]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[14]  R. C. Harding,et al.  SOLUTION OF VLASOV'S EQUATION BY TRANSFORM METHODS. , 1970 .

[15]  Luis Chacón,et al.  A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm , 2015, Comput. Phys. Commun..

[16]  Wei Guo,et al.  A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations , 2014, J. Comput. Phys..

[17]  Luis Chacón,et al.  Development of a Consistent and Stable Fully Implicit Moment Method for Vlasov-Ampère Particle in Cell (PIC) System , 2013, SIAM J. Sci. Comput..

[18]  Jeremiah U. Brackbill,et al.  On energy and momentum conservation in particle-in-cell plasma simulation , 2015, J. Comput. Phys..

[19]  Blanca Ayuso de Dios,et al.  DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV–POISSON PROBLEM , 2012 .

[20]  David C. Seal,et al.  A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..

[21]  Stephen Wollman On the Approximation of the Vlasov-Poisson System by Particle Methods , 2000, SIAM J. Numer. Anal..

[22]  Gianmarco Manzini,et al.  SpectralPlasmaSolver: a Spectral Code for Multiscale Simulations of Collisionless, Magnetized Plasmas , 2016 .

[23]  Andrew J. Christlieb,et al.  A conservative high order semi-Lagrangian WENO method for the Vlasov equation , 2010, J. Comput. Phys..

[24]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[25]  Rodolfo Bermejo,et al.  A Galerkin-characteristic algorithm for transport-diffusion equations , 1995 .

[26]  Tao Xiong,et al.  Conservative Multi-dimensional Semi-Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simulations , 2019, J. Sci. Comput..

[27]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[28]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[29]  J. Moulton,et al.  On the velocity space discretization for the Vlasov-Poisson system: comparison between Hermite spectral and Particle-in-Cell methods. Part 2: fully-implicit scheme , 2013, 1311.2098.

[30]  H. Gajewski,et al.  On the convergence of the Fourier-Hermite transformation method for the Vlasov equation with an artificial collision term , 1977 .

[31]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[32]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[33]  Gian Luca Delzanno,et al.  New approach for the study of linear Vlasov stability of inhomogeneous systems , 2006 .

[34]  Giovanni Lapenta,et al.  Exactly energy conserving semi-implicit particle in cell formulation , 2016, J. Comput. Phys..

[35]  L. C. Woods Physics of plasmas , 2003 .

[36]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[37]  Peter D. Welch,et al.  The Fast Fourier Transform and Its Applications , 1969 .

[38]  Gian Luca Delzanno,et al.  On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods , 2016, Comput. Phys. Commun..

[39]  Erwin Laure,et al.  Spectral Solver for Multi-scale Plasma Physics Simulations with Dynamically Adaptive Number of Moments , 2015, ICCS.

[40]  Eric Sonnendrücker,et al.  A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..

[41]  Georges-Henri Cottet,et al.  Particle Methods for the One-Dimensional Vlasov–Poisson Equations , 1984 .

[42]  F. Filbet,et al.  Convergence of a Finite Volume Scheme for the Vlasov-Poisson System , 2001, SIAM J. Numer. Anal..

[43]  Phillip Colella,et al.  A 4th-Order Particle-in-Cell Method with Phase-Space Remapping for the Vlasov-Poisson Equation , 2016, SIAM J. Sci. Comput..

[44]  Gian Luca Delzanno,et al.  A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system , 2016, J. Comput. Phys..

[45]  Jean Dolbeault,et al.  An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation , 2002 .

[46]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[47]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[48]  T. Arber,et al.  A Critical Comparison of Eulerian-Grid-Based Vlasov Solvers , 2002 .

[49]  Joseph W. Schumer,et al.  Vlasov Simulations Using Velocity-Scaled Hermite Representations , 1998 .

[50]  J W Banks,et al.  A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation , 2009, IEEE Transactions on Plasma Science.

[51]  James Paul Holloway,et al.  Spectral velocity discretizations for the Vlasov-Maxwell equations , 1996 .

[52]  José A. Carrillo,et al.  Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system , 2011 .

[53]  Alexander J. Klimas,et al.  A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. [in earth bow shock region , 1983 .

[54]  Giovanni Russo,et al.  A High Order Multi-Dimensional Characteristic Tracing Strategy for the Vlasov–Poisson System , 2017, J. Sci. Comput..

[55]  R. Bermejo Analysis of an algorithm for the Galerkin-characteristic method , 1991 .

[56]  J. S. Sawyer A semi-Lagrangian method of solving the vorticity advection equation , 1963 .

[57]  Stefano Markidis,et al.  Particle acceleration and energy conservation in particle in cell simulations , 2011 .

[58]  Eric Sonnendrücker,et al.  Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations , 2011, Numerische Mathematik.

[59]  Gian Luca Delzanno,et al.  Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form , 2015, J. Comput. Phys..