Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system
暂无分享,去创建一个
[1] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[2] Sigal Gottlieb,et al. Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.
[3] Stephen Wollman,et al. Numerical Approximation of the One-Dimensional Vlasov--Poisson System with Periodic Boundary Conditions , 1996 .
[4] Gianmarco Manzini,et al. Convergence of Spectral Discretizations of the Vlasov-Poisson System , 2016, SIAM J. Numer. Anal..
[5] Paul J. Dellar,et al. Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit , 2014, Journal of Plasma Physics.
[6] Yingda Cheng,et al. Numerical study of the two-species Vlasov-Ampère system: Energy-conserving schemes and the current-driven ion-acoustic instability , 2014, J. Comput. Phys..
[7] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[8] Luis Chacón,et al. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..
[9] José A. Carrillo,et al. Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..
[10] R. Glassey,et al. The Cauchy Problem in Kinetic Theory , 1987 .
[11] Stefano Markidis,et al. The energy conserving particle-in-cell method , 2011, J. Comput. Phys..
[12] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[13] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[14] R. C. Harding,et al. SOLUTION OF VLASOV'S EQUATION BY TRANSFORM METHODS. , 1970 .
[15] Luis Chacón,et al. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm , 2015, Comput. Phys. Commun..
[16] Wei Guo,et al. A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations , 2014, J. Comput. Phys..
[17] Luis Chacón,et al. Development of a Consistent and Stable Fully Implicit Moment Method for Vlasov-Ampère Particle in Cell (PIC) System , 2013, SIAM J. Sci. Comput..
[18] Jeremiah U. Brackbill,et al. On energy and momentum conservation in particle-in-cell plasma simulation , 2015, J. Comput. Phys..
[19] Blanca Ayuso de Dios,et al. DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV–POISSON PROBLEM , 2012 .
[20] David C. Seal,et al. A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..
[21] Stephen Wollman. On the Approximation of the Vlasov-Poisson System by Particle Methods , 2000, SIAM J. Numer. Anal..
[22] Gianmarco Manzini,et al. SpectralPlasmaSolver: a Spectral Code for Multiscale Simulations of Collisionless, Magnetized Plasmas , 2016 .
[23] Andrew J. Christlieb,et al. A conservative high order semi-Lagrangian WENO method for the Vlasov equation , 2010, J. Comput. Phys..
[24] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[25] Rodolfo Bermejo,et al. A Galerkin-characteristic algorithm for transport-diffusion equations , 1995 .
[26] Tao Xiong,et al. Conservative Multi-dimensional Semi-Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simulations , 2019, J. Sci. Comput..
[27] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .
[28] François Golse,et al. Kinetic equations and asympotic theory , 2000 .
[29] J. Moulton,et al. On the velocity space discretization for the Vlasov-Poisson system: comparison between Hermite spectral and Particle-in-Cell methods. Part 2: fully-implicit scheme , 2013, 1311.2098.
[30] H. Gajewski,et al. On the convergence of the Fourier-Hermite transformation method for the Vlasov equation with an artificial collision term , 1977 .
[31] H. Grad. On the kinetic theory of rarefied gases , 1949 .
[32] P. J. Morrison,et al. A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..
[33] Gian Luca Delzanno,et al. New approach for the study of linear Vlasov stability of inhomogeneous systems , 2006 .
[34] Giovanni Lapenta,et al. Exactly energy conserving semi-implicit particle in cell formulation , 2016, J. Comput. Phys..
[35] L. C. Woods. Physics of plasmas , 2003 .
[36] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[37] Peter D. Welch,et al. The Fast Fourier Transform and Its Applications , 1969 .
[38] Gian Luca Delzanno,et al. On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods , 2016, Comput. Phys. Commun..
[39] Erwin Laure,et al. Spectral Solver for Multi-scale Plasma Physics Simulations with Dynamically Adaptive Number of Moments , 2015, ICCS.
[40] Eric Sonnendrücker,et al. A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..
[41] Georges-Henri Cottet,et al. Particle Methods for the One-Dimensional Vlasov–Poisson Equations , 1984 .
[42] F. Filbet,et al. Convergence of a Finite Volume Scheme for the Vlasov-Poisson System , 2001, SIAM J. Numer. Anal..
[43] Phillip Colella,et al. A 4th-Order Particle-in-Cell Method with Phase-Space Remapping for the Vlasov-Poisson Equation , 2016, SIAM J. Sci. Comput..
[44] Gian Luca Delzanno,et al. A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system , 2016, J. Comput. Phys..
[45] Jean Dolbeault,et al. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation , 2002 .
[46] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[47] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[48] T. Arber,et al. A Critical Comparison of Eulerian-Grid-Based Vlasov Solvers , 2002 .
[49] Joseph W. Schumer,et al. Vlasov Simulations Using Velocity-Scaled Hermite Representations , 1998 .
[50] J W Banks,et al. A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation , 2009, IEEE Transactions on Plasma Science.
[51] James Paul Holloway,et al. Spectral velocity discretizations for the Vlasov-Maxwell equations , 1996 .
[52] José A. Carrillo,et al. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system , 2011 .
[53] Alexander J. Klimas,et al. A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. [in earth bow shock region , 1983 .
[54] Giovanni Russo,et al. A High Order Multi-Dimensional Characteristic Tracing Strategy for the Vlasov–Poisson System , 2017, J. Sci. Comput..
[55] R. Bermejo. Analysis of an algorithm for the Galerkin-characteristic method , 1991 .
[56] J. S. Sawyer. A semi-Lagrangian method of solving the vorticity advection equation , 1963 .
[57] Stefano Markidis,et al. Particle acceleration and energy conservation in particle in cell simulations , 2011 .
[58] Eric Sonnendrücker,et al. Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations , 2011, Numerische Mathematik.
[59] Gian Luca Delzanno,et al. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form , 2015, J. Comput. Phys..