The Use of Parallel Polynomial Preconditioners in the Solution of Systems of Linear Equations
暂无分享,去创建一个
[1] Rene F. Swarttouw,et al. Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.
[2] Claude Brezinski,et al. Avoiding breakdown in the CGS algorithm , 1991, Numerical Algorithms.
[3] Claude Brezinski,et al. Avoiding breakdown and near-breakdown in Lanczos type algorithms , 1991, Numerical Algorithms.
[4] Anne Greenbaum,et al. Approximating the inverse of a matrix for use in iterative algorithms on vector processors , 1979, Computing.
[5] Kumar K. Tamma,et al. A‐scalability and an integrated computational technology and framework for non‐linear structural dynamics. Part 1: Theoretical developments and parallel formulations , 2003 .
[6] K. Tamma,et al. A variationally consistent framework for the design of integrator and updates of generalized single step representations for structural dynamics , 2003 .
[7] Masha Sosonkina,et al. pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..
[8] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[9] Marek Szularz,et al. Generalized least-squares polynomial preconditioners for symmetric indefinite linear equations , 2002, Parallel Comput..
[10] Olof B. Widlund,et al. DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .
[11] Marek Szularz,et al. Polynomial Preconditioning for Specially Structured Linear Systems of Equations , 2001, Euro-Par.
[12] D. Rixen,et al. FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .
[13] Jan Mandel,et al. On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.
[14] C. Farhat,et al. A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..
[15] Kumar K. Tamma,et al. A unified family of generalized integration operators [GInO] for non-linear structural dynamics: implementation aspects , 2000 .
[16] Olof B. Widlund,et al. A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..
[17] Gundolf Haase. A PARALLEL AMG FOR OVERLAPPING AND NON-OVERLAPPING DOMAIN DECOMPOSITION , 2000 .
[18] Charbel Farhat,et al. A family of domain decomposition methods for the massively parallel solution of computational mechanics problems , 2000 .
[19] Kumar K. Tamma,et al. Highly scalable parallel computational models for large-scale RTM process modeling simulations, part 2 : Parallel formulation theory and implementation , 1999 .
[20] G. Meurant. Computer Solution of Large Linear Systems , 1999 .
[21] Maurice Clint,et al. Explicitly restarted Lanczos algorithms in an MPP environment , 1999, Parallel Comput..
[22] Jack J. Dongarra,et al. A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..
[23] Marcus J. Grote,et al. A Block Version of the SPAI Preconditioner , 1999, PP.
[24] S. SIAMJ.. A PARALLEL DIVIDE AND CONQUER ALGORITHM FOR THE SYMMETRIC EIGENVALUE PROBLEM ON DISTRIBUTED MEMORY ARCHITECTURES , 1999 .
[25] Edmond Chow,et al. Preserving Symmetry in Preconditioned Krylov Subspace Methods , 1998, SIAM J. Sci. Comput..
[26] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[27] Victor Eijkhout. Overview of Iterative Linear System Solver Packages , 1998 .
[28] Charbel Farhat,et al. A unified framework for accelerating the convergence of iterative substructuring methods with Lagrange multipliers , 1998 .
[29] H. Wozniakowski,et al. Estimating a largest eigenvector by Lanczos and polynomial algorithms with a random start , 1998 .
[30] C. Farhat,et al. The two-level FETI method. Part II: Extension to shell problems, parallel implementation and performance results , 1998 .
[31] C. Farhat,et al. The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .
[32] N. Gould,et al. Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques , 1998, SIAM J. Sci. Comput..
[33] Kevin Burrage,et al. On the performance of various adaptive preconditioned GMRES strategies , 1998, Numer. Linear Algebra Appl..
[34] S. J. Sci. PRESERVING SYMMETRY IN PRECONDITIONED KRYLOV SUBSPACE METHODS , 1998 .
[35] Martyn R. Field. Optimizing a Parallel Conjugate Gradient Solver , 1998, SIAM J. Sci. Comput..
[36] Andreas Frommer,et al. Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..
[37] Rakesh K. Kapania,et al. A new adaptive GMRES algorithm for achieving high accuracy , 1998, Numer. Linear Algebra Appl..
[38] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[39] Marcus J. Grote,et al. Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..
[40] S. A. STOTLAND,et al. Orderings for Parallel Conjugate Gradient Preconditioners , 1997, SIAM J. Sci. Comput..
[41] K. Meerbergen,et al. The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .
[42] H. Walker,et al. GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..
[43] Kim-Chuan Toh,et al. GMRES vs. Ideal GMRES , 1997, SIAM J. Matrix Anal. Appl..
[44] Daniel Rixen,et al. Preconditioning the FETI Method for Problems with Intra- and Inter-Subdomain Coefficient Jumps , 1997 .
[45] Thomas A. Manteuffel,et al. Minimal Residual Method Stronger than Polynomial Preconditioning , 1996, SIAM J. Matrix Anal. Appl..
[46] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[47] Sosonkina Maria,et al. A New Adaptive GMRES Algorithm for Achieving High Accuracy , 1996 .
[48] Yousef Saad,et al. Overlapping Domain Decomposition Algorithms for General Sparse Matrices , 1996, Numer. Linear Algebra Appl..
[49] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[50] Anne Greenbaum,et al. Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..
[51] Jack Dongarra,et al. MPI: The Complete Reference , 1996 .
[52] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[53] Richard Y. Kain. Advanced computer architecture: a system design approach , 1996, WCAE-2 '96.
[54] C. Farhat,et al. A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .
[55] Adhemar Bultheel,et al. Vector Orthogonal Polynomials and Least Squares Approximation , 1995, SIAM J. Matrix Anal. Appl..
[56] K. Bathe. Finite Element Procedures , 1995 .
[57] A. Bruaset. A survey of preconditioned iterative methods , 1995 .
[58] Vipin Kumar,et al. Performance and Scalability of Preconditioned Conjugate Gradient Methods on Parallel Computers , 1995, IEEE Trans. Parallel Distributed Syst..
[59] Zhaojun Bai,et al. Progress in the numerical solution of the nonsymmetric eigenvalue problem , 1995, Numer. Linear Algebra Appl..
[60] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[61] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[62] D. Calvetti,et al. Application of a block modified Chebyshev algorithm to the iterative solution of symmetric linear systems with multiple right hand side vectors , 1994 .
[63] Wayne Joubert,et al. A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..
[64] John N. Shadid,et al. A Comparison of Preconditioned Nonsymmetric Krylov Methods on a Large-Scale MIMD Machine , 1994, SIAM J. Sci. Comput..
[65] Roland W. Freund,et al. On Adaptive Weighted Polynomial Preconditioning for Hermitian Positive Definite Matrices , 1994, SIAM J. Sci. Comput..
[66] Gene H. Golub,et al. An adaptive Chebyshev iterative method\newline for nonsymmetric linear systems based on modified moments , 1994 .
[67] George Karypis,et al. Introduction to Parallel Computing , 1994 .
[68] Youcef Saad,et al. Highly Parallel Preconditioners for General Sparse Matrices , 1994 .
[69] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[70] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[71] G. Golub,et al. How to generate unknown orthogonal polynomials out of known orthogonal polynomials , 1992 .
[72] John N. Shadid,et al. Sparse iterative algorithm software for large-scale MIMD machines: An initial discussion and implementation , 1992, Concurr. Pract. Exp..
[73] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[74] Hesham El-Rewini,et al. Introduction to Parallel Computing , 1992 .
[75] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[76] C. Farhat,et al. A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .
[77] S. Ashby. Minimax polynomial preconditioning for Hermitian linear systems , 1991 .
[78] Charbel Farhat,et al. A Lagrange multiplier based divide and conquer finite element algorithm , 1991 .
[79] David S. Watkins,et al. Fundamentals of matrix computations , 1991 .
[80] Tony F. Chan,et al. A Note on the Efficiency of Domain Decomposed Incomplete Factorizations , 1990, SIAM J. Sci. Comput..
[81] I. Duff,et al. The effect of ordering on preconditioned conjugate gradients , 1989 .
[82] H. V. D. Vorst,et al. High Performance Preconditioning , 1989 .
[83] Gene H. Golub,et al. On generating polynomials which are orthogonal over several intervals , 1989 .
[84] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[85] Angel L. DeCegama,et al. The technology of parallel processing: parallel processing architectures and VLSI hardware (vol. 1) , 1989 .
[86] S. Ashby. Polynomial Preconditioning for Conjugate Gradient Methods , 1988 .
[87] Gilbert Strang,et al. Introduction to applied mathematics , 1988 .
[88] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[89] K. Law. A parallel finite element solution method , 1986 .
[90] Y. Saad,et al. Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .
[91] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[92] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[93] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[94] Y. Saad,et al. Iterative Solution of Indefinite Symmetric Linear Systems by Methods Using Orthogonal Polynomials over Two Disjoint Intervals , 1983 .
[95] J. Dixon. Estimating Extremal Eigenvalues and Condition Numbers of Matrices , 1983 .
[96] C. Micchelli,et al. Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .
[97] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .
[98] Henk A. van der Vorst,et al. A Vectorizable Variant of some ICCG Methods , 1982 .
[99] H. V. D. Vorst,et al. Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems☆ , 1981 .
[100] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[101] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[102] J. H. Wilkinson,et al. AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX , 1979 .
[103] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[104] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[105] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[106] Murray R. Spiegel. Scaum's outline of theory and problems of vector analysis : and an introduction to tensor analysis S 1 (metric) edition / by Murray R. Spiegel , 1974 .
[107] K. Harbarth. K. Rektorys, Survey of Applicable Mathematics. 1369 S. m. Fig. London 1969. Iliffe Books Ltd. Preis geb. 85 s. net , 1973 .
[108] Louis A. Hageman,et al. Iterative Solution of Large Linear Systems. , 1971 .
[109] T. Broadbent,et al. Survey of Applicable Mathematics , 1970, The Mathematical Gazette.
[110] H. Meschkowski. Series Expansions for Mathematical Physicists , 1969 .
[111] D. C. Handscomb,et al. Methods of Numerical Approximation , 1967 .
[112] B. Wendroff. Theoretical Numerical Analysis , 1966 .
[113] E. Cheney. Introduction to approximation theory , 1966 .
[114] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[115] P. Davis. Interpolation and approximation , 1965 .
[116] F. B. Hildebrand,et al. Introduction To Numerical Analysis , 1957 .
[117] C. Lanczos. Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.