Künstliche Intelligenz in der Hybridbildgebung

Klinisches Problem Hybridbildgebung ermöglicht es durch die Kombination anatomischer und molekularer Informationen, zellulären Metabolismus ortsgenau darzustellen. Die Fortschritte in der künstlichen Intelligenz (KI) bieten neue Methoden zur Verarbeitung und Auswertung dieser Daten. Methodische Innovationen Diese Übersichtsarbeit fasst aktuelle Entwicklungen und Anwendungen von KI-Methoden in der Hybridbildgebung zusammen. Es werden sowohl Anwendungen in der Bildverarbeitung als auch Methoden zur krankheitsbezogenen Auswertung vorgestellt und diskutiert. Material und Methoden Die Arbeit beruht auf einer selektiven Literaturrecherche in den Suchmaschinen PubMed und arXiv. Bewertung Aktuell gibt es nur wenige KI-Anwendungen, die hybride Bilddaten verwenden, und noch keine Anwendungen, die im klinischen Alltag etabliert sind. Obwohl sich erste vielversprechende Ansätze zeigen, müssen diese noch prospektiv evaluiert werden. In Zukunft werden KI-Anwendungen Radiologen und Nuklearmediziner bei Diagnostik und Therapie unterstützen. Clinical issue Hybrid imaging enables the precise visualization of cellular metabolism by combining anatomical and metabolic information. Advances in artificial intelligence (AI) offer new methods for processing and evaluating this data. Methodological innovations This review summarizes current developments and applications of AI methods in hybrid imaging. Applications in image processing as well as methods for disease-related evaluation are presented and discussed. Materials and methods This article is based on a selective literature search with the search engines PubMed and arXiv. Assessment Currently, there are only a few AI applications using hybrid imaging data and no applications are established in clinical routine yet. Although the first promising approaches are emerging, they still need to be evaluated prospectively. In the future, AI applications will support radiologists and nuclear medicine radiologists in diagnosis and therapy.

[1]  Rickmer Braren,et al.  [A primer on machine learning]. , 2019, Der Radiologe.

[2]  Bjoern H Menze,et al.  qPSMA: Semiautomatic Software for Whole-Body Tumor Burden Assessment in Prostate Cancer Using 68Ga-PSMA11 PET/CT , 2019, The Journal of Nuclear Medicine.

[3]  R. Braren,et al.  [A primer on radiomics]. , 2019, Der Radiologe.

[4]  A. McMillan,et al.  Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images , 2018, Tomography.

[5]  Luca Antiga,et al.  Convolutional Neural Networks Promising in Lung Cancer T-Parameter Assessment on Baseline FDG-PET/CT , 2018, Contrast media & molecular imaging.

[6]  Christina Gsaxner,et al.  Exploit fully automatic low-level segmented PET data for training high-level deep learning algorithms for the corresponding CT data , 2019, PloS one.

[7]  C. Jack,et al.  Mild cognitive impairment: ten years later. , 2009, Archives of neurology.

[8]  Jiahe Tian,et al.  PET image denoising using unsupervised deep learning , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[9]  Ciprian Catana,et al.  The Dawn of a New Era in Low-Dose PET Imaging. , 2019, Radiology.

[10]  Adrian Preda,et al.  Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images , 2018, Scientific Reports.

[11]  Yu Zhao,et al.  Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods , 2018, Contrast media & molecular imaging.

[12]  F. Saad,et al.  Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer , 2019, Clinical Cancer Research.

[13]  Alexandra Oudot,et al.  Functionalization of Gadolinium Chelates Silica Nanoparticle through Silane Chemistry for Simultaneous MRI/64Cu PET Imaging , 2018, Contrast media & molecular imaging.

[14]  Xiahai Zhuang,et al.  Diagnosis of Alzheimer’s Disease via Multi-Modality 3D Convolutional Neural Network , 2019, Front. Neurosci..

[15]  A. McMillan,et al.  Deep learning Mr imaging–based attenuation correction for PeT/Mr imaging 1 , 2017 .

[16]  Robert C. Knowlton,et al.  Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias , 2018, NeuroImage.

[17]  Qiaoliang Li,et al.  Fully Automated Delineation of Gross Tumor Volume for Head and Neck Cancer on PET-CT Using Deep Learning: A Dual-Center Study , 2018, Contrast media & molecular imaging.

[18]  Yong Xu,et al.  Deep Learning for Image Denoising: A Survey , 2018, ICGEC.

[19]  Robert Jeraj,et al.  Automated classification of benign and malignant lesions in 18F-NaF PET/CT images using machine learning , 2018, Physics in medicine and biology.

[20]  Martin Bendszus,et al.  Virtual Raters for Reproducible and Objective Assessments in Radiology , 2016, Scientific Reports.

[21]  Wanyu Liu,et al.  The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. , 2015, European journal of radiology.

[22]  Dinggang Shen,et al.  Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI , 2017, Neurocomputing.

[23]  P. Carroll,et al.  Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. , 2019, JAMA oncology.

[24]  Sterling C. Johnson,et al.  Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images , 2017, ArXiv.

[25]  Leixin Zhou,et al.  Simultaneous cosegmentation of tumors in PET‐CT images using deep fully convolutional networks , 2019, Medical physics.

[26]  Marcus Hacker,et al.  Personalizing Medicine Through Hybrid Imaging and Medical Big Data Analysis , 2018, Front. Phys..

[27]  M. Nittka,et al.  Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR Fingerprinting , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[28]  Wei Lu,et al.  Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network , 2018, Physics in medicine and biology.

[29]  L. Marner,et al.  Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting , 2019, Front. Neurosci..

[30]  Zhonghua Chen,et al.  Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images , 2017, EJNMMI Research.

[31]  Ivan S Klyuzhin,et al.  Use of a Tracer-Specific Deep Artificial Neural Net to Denoise Dynamic PET Images , 2020, IEEE Transactions on Medical Imaging.

[32]  Zhe Guo,et al.  Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes , 2017, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[33]  Yang Lei,et al.  Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging , 2019, Physics in medicine and biology.

[34]  C. Schiepers,et al.  Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases. , 2012, Bone.

[35]  Brian F. Hutton,et al.  Improved MR to CT synthesis for PET/MR attenuation correction using Imitation Learning , 2019, SASHIMI@MICCAI.

[36]  Dinggang Shen,et al.  Locality Adaptive Multi-modality GANs for High-Quality PET Image Synthesis , 2018, MICCAI.

[37]  Chih-Chieh Liu,et al.  Higher SNR PET image prediction using a deep learning model and MRI image , 2019, Physics in medicine and biology.

[38]  John M Pauly,et al.  Ultra-Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs. , 2019, Radiology.

[39]  Richard Kijowski,et al.  A deep learning approach for 18F-FDG PET attenuation correction , 2018, EJNMMI Physics.

[40]  S. Lamon,et al.  Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training , 2015, Front. Physiol..

[41]  J. Kleesiek,et al.  Wie funktioniert maschinelles Lernen? , 2019, Der Radiologe.

[42]  Kevin H. Leung,et al.  Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC) , 2019, European Radiology.

[43]  Junshen Xu,et al.  200x Low-dose PET Reconstruction using Deep Learning , 2017, ArXiv.