Towards an Understanding of the Neural Basis of Acoustic Communication in Crickets

Their conspicuous acoustic communication behaviour makes crickets excellent model systems to study the neural mechanisms underlying signal generation and auditory pattern recognition. Male singing is driven by a central pattern generator (CPG) housed in the metathoracic and anterior abdominal ganglia with rhythmically active opener and closer interneurons that can reset the chirp rhythm. Command neurons descending from the brain control the singing behaviour. Female phonotaxis is tuned towards the species-specific pattern of the male calling song and auditory orientation behaviour demonstrates a parallel organisation of pattern recognition and highly accurate steering. First order auditory processing occurs in the thorax and pattern recognition in the brain. Local auditory brain neurons are tuned to the structure of the calling song, based on fast integration of inhibitory and excitatory synaptic activity. How pattern recognition is linked to the generation of auditory steering commands still remains an open question.

[1]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[2]  D. Otto Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen , 1971, Zeitschrift für vergleichende Physiologie.

[3]  John F. Stout,et al.  Attractiveness of the maleAcheta domesticus calling song to females , 2004, Journal of comparative physiology.

[4]  John Thorson,et al.  Auditory behavior of the cricket , 2004, Journal of Comparative Physiology A.

[5]  G. Pollack,et al.  Who, what, where? recognition and localization of acoustic signals by insects , 2000, Current Opinion in Neurobiology.

[6]  D. Bentley Control of cricket song patterns by descending interneurons , 2004, Journal of comparative physiology.

[7]  B Hedwig,et al.  Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system , 2005, Journal of Experimental Biology.

[8]  J C Stout,et al.  Attractiveness of the male Acheta domesticus calling song to females , 1991, Journal of Comparative Physiology A.

[9]  Berthold Hedwig,et al.  Kinematics of phonotactic steering in the walking cricket Gryllus bimaculatus (de Geer) , 2011, Journal of Experimental Biology.

[10]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[11]  Berthold Hedwig,et al.  A corollary discharge maintains auditory sensitivity during sound production , 2002, Nature.

[12]  Franz Huber,et al.  9. Neural Basis of Song Production , 2019, Cricket Behavior and Neurobiology.

[13]  K. R. Weiss,et al.  The command neuron concept , 1978, Behavioral and Brain Sciences.

[14]  Axel Michelsen,et al.  Tuned directionality in cricket ears , 1995, Nature.

[15]  E. Staudacher Distribution and morphology of descending brain neurons in the cricket Gryllus bimaculatus , 1998, Cell and Tissue Research.

[16]  D. Tank,et al.  In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron: An Example of Chemical Computation , 1994, Science.

[17]  B. Hedwig,et al.  Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper , 1997, Journal of Comparative Physiology A.

[18]  Jürgen Rheinlaender,et al.  The precision of auditory lateralization in the cricket, Gryllus bimaculatus , 1982 .

[19]  Hoy Rr,et al.  Acoustic communication in crickets: a model system for the study of feature detection. , 1978 .

[20]  Hedwig,et al.  Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. , 1999, The Journal of experimental biology.

[21]  B. Hedwig,et al.  Neural basis of singing in crickets: central pattern generation in abdominal ganglia , 2011, Naturwissenschaften.

[22]  B. Hedwig,et al.  Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer) , 2012, Brain and behavior.

[23]  B. Hedwig,et al.  Calling Song Recognition in Female Crickets: Temporal Tuning of Identified Brain Neurons Matches Behavior , 2012, The Journal of Neuroscience.

[24]  Franz Huber Sitz und Bedeutung nervser Zentren fr Instinkthandlungen beim Mnnchen von Gryllus campestris L. , 2010 .

[25]  Andrew C. Mason,et al.  Hyperacute directional hearing in a microscale auditory system , 2001, Nature.

[26]  G. Pollack,et al.  Neural representation of sound amplitude by functionally different auditory receptors in crickets. , 2001, The Journal of the Acoustical Society of America.

[27]  G. Rose,et al.  Counting on Inhibition and Rate-Dependent Excitation in the Auditory System , 2007, The Journal of Neuroscience.

[28]  A. V. Popov,et al.  Acoustic Behaviour and Auditory System in Insects , 1974 .

[29]  D. Otte Evolution of Cricket Songs , 1992 .

[30]  H. Okamoto,et al.  Imaging of Transgenic Cricket Embryos Reveals Cell Movements Consistent with a Syncytial Patterning Mechanism , 2010, Current Biology.

[31]  T. J. Walker,et al.  Phonotaxis of Crickets in Flight: Attraction of Male and Female Crickets to Male Calling Songs , 1973, Science.

[32]  D. Bentley,et al.  Intracellular activity in cricket neurons during the generation of behaviour patterns. , 1969, Journal of insect physiology.

[33]  Barbara Schmitz,et al.  Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae) , 2004, Journal of comparative physiology.

[34]  R. R. Capranica,et al.  Temporal selectivity in the central auditory system of the leopard frog. , 1983, Science.

[35]  Franz Huber,et al.  Cricket auditory communication , 1985 .

[36]  B Hedwig,et al.  Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. , 2011, Journal of neurophysiology.

[37]  Berthold Hedwig,et al.  Complex auditory behaviour emerges from simple reactive steering , 2004, Nature.

[38]  D. Perkel,et al.  Motor Pattern Production in Reciprocally Inhibitory Neurons Exhibiting Postinhibitory Rebound , 1974, Science.

[39]  R. M. Hennig Neuronal organisation of the flight motor pattern in the cricket, Teleogryllus commodus , 1990, Journal of Comparative Physiology A.

[40]  K. Schildberger,et al.  Temporal selectivity of identified auditory neurons in the cricket brain , 2004, Journal of Comparative Physiology A.

[41]  A. Popper,et al.  The Evolutionary biology of hearing , 1992 .

[42]  Richard E Reeve,et al.  New neural circuits for robot phonotaxis , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  H. Römer,et al.  Sound transmission and directional hearing in field crickets: neurophysiological studies outdoors , 2010, Journal of Comparative Physiology A.

[44]  Harald Nocke,et al.  Physiological aspects of sound communication in crickets (Gryllus campestris L.) , 1972, Journal of comparative physiology.

[45]  G. Pollack,et al.  Temporal Pattern as a Cue for Species-Specific Calling Song Recognition in Crickets , 1979, Science.

[46]  J. Regen Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens , 1913, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[47]  Analysis of the acoustic orientation behavior in crickets (Gryllus campestris L.) , 1980, Naturwissenschaften.

[48]  R. Hoy,et al.  Initiation of behavior by single neurons: the role of behavioral context. , 1984, Science.

[49]  John Quackenbush,et al.  A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution , 2007, BMC Genomics.

[50]  R. Murphey,et al.  Orientation to calling song by female crickets, Scapsipedus marginatus (Gryllidae). , 1972, The Journal of experimental biology.

[51]  G. Pollack,et al.  Selective attention in an insect auditory neuron , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Axel Michelsen,et al.  Hearing and Sound Communication in Small Animals: Evolutionary Adaptations to the Laws of Physics , 1992 .

[53]  Georgios Petrou,et al.  Detailed tracking of body and leg movements of a freely walking female cricket during phonotaxis , 2012, Journal of Neuroscience Methods.

[54]  D. Robert,et al.  Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae) , 2011, Journal of Experimental Biology.

[55]  R. D. Alexander,et al.  EVOLUTIONARY CHANGE IN CRICKET ACOUSTICAL COMMUNICATION , 1962 .

[56]  E. Staudacher,et al.  Gating of sensory responses of descending brain neurones during walking in crickets , 1998 .

[57]  E. Staudacher Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus , 2001, Journal of Comparative Physiology A.

[58]  B Hedwig,et al.  Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer) , 2008, Journal of Experimental Biology.

[59]  F. Huber,et al.  14. Central Auditory Pathway: Neuronal Correlates of Phonotactic Behavior , 2019, Cricket Behavior and Neurobiology.

[60]  Pollack Representation of behaviorally relevant sound frequencies by auditory receptors in the cricket teleogryllus oceanicus , 1998, The Journal of experimental biology.

[61]  B Hedwig,et al.  Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. , 2000, Journal of neurophysiology.

[62]  Franz Huber,et al.  Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket,Gryllus campestris L. , 1982, Journal of comparative physiology.

[63]  D. Helversen,et al.  Evolution and function of auditory systems in insects , 2001, Naturwissenschaften.

[64]  B. Hedwig,et al.  Hyperacute Directional Hearing and Phonotactic Steering in the Cricket (Gryllus bimaculatus deGeer) , 2010, PloS one.

[65]  Franz Huber,et al.  Auditory behavior of the cricket , 2004, Journal of comparative physiology.

[66]  M. Hörner,et al.  The function of auditory neurons in cricket phonotaxis , 2004, Journal of Comparative Physiology A.

[67]  Berthold Hedwig,et al.  Auditory orientation in crickets: Pattern recognition controls reactive steering , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. Rose,et al.  Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning , 2010, Journal of Comparative Physiology A.

[69]  Franz Huber,et al.  Primary auditory neurons in crickets: Physiology and central projections , 1980, Journal of comparative physiology.

[70]  J A Doherty,et al.  A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae). , 1987, The Journal of experimental biology.

[71]  D. von Helversen,et al.  Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? , 1995, Journal of Comparative Physiology A.

[72]  A. V. Popov,et al.  Physics of directional hearing in the cricket Gryllus bimaculatus , 1994, Journal of Comparative Physiology A.

[73]  R. Wyttenbach,et al.  Categorical Perception of Sound Frequency by Crickets , 1996, Science.

[74]  Wolfram Kutsch Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten , 1969, Zeitschrift für vergleichende Physiologie.

[75]  R. M. Hennig,et al.  Interneurons descending from the cricket subesophageal ganglion control stridulation and ventilation , 2005, Naturwissenschaften.

[76]  H. Heffner,et al.  Sound-localization acuity and its relation to vision in large and small fruit-eating bats: I. Echolocating species, Phyllostomus hastatus and Carollia perspicillata , 2007, Hearing Research.