Determining identifiable parameter combinations using subset profiling.

Identifiability is a necessary condition for successful parameter estimation of dynamic system models. A major component of identifiability analysis is determining the identifiable parameter combinations, the functional forms for the dependencies between unidentifiable parameters. Identifiable combinations can help in model reparameterization and also in determining which parameters may be experimentally measured to recover model identifiability. Several numerical approaches to determining identifiability of differential equation models have been developed, however the question of determining identifiable combinations remains incompletely addressed. In this paper, we present a new approach which uses parameter subset selection methods based on the Fisher Information Matrix, together with the profile likelihood, to effectively estimate identifiable combinations. We demonstrate this approach on several example models in pharmacokinetics, cellular biology, and physiology.

[1]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .

[2]  C. Cobelli,et al.  Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.

[3]  Maria Pia Saccomani,et al.  Parameter identifiability of nonlinear systems: the role of initial conditions , 2003, Autom..

[4]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[5]  Jens Timmer,et al.  Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[7]  Jean-Dominique Lebreton,et al.  Parameter Identifiability and Model Selection in Capture‐Recapture Models: A Numerical Approach , 1998 .

[8]  A. Holmberg On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities , 1982 .

[9]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[10]  J J DiStefano,et al.  Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. , 1984, The American journal of physiology.

[11]  Nicolette Meshkat,et al.  Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations. , 2011, Mathematical biosciences.

[12]  J. DiStefano,et al.  Kinetic analysis of thyroid hormone secretion and interconversion in the 5-day-fasted rainbow trout, Oncorhynchus mykiss. , 1996, General and comparative endocrinology.

[13]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[14]  C Cobelli,et al.  SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies. , 1998, Metabolism: clinical and experimental.

[15]  Suzanne L Robertson,et al.  Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. , 2013, Journal of theoretical biology.

[16]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[17]  Eva Balsa-Canto,et al.  An iterative identification procedure for dynamic modeling of biochemical networks , 2010, BMC Systems Biology.

[18]  Nicolette Meshkat,et al.  An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases. , 2009, Mathematical biosciences.

[19]  M J Chappell,et al.  Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems. , 2000, Mathematical biosciences.

[20]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[21]  A. Neubauer Minisymposium — Recent progress in regularization theory , 2009 .

[22]  Tom Wansbeek,et al.  Identification in parametric models , 2001 .

[23]  D M Titterington,et al.  Determining the parametric structure of models. , 2010, Mathematical biosciences.

[24]  S. Moolgavkar,et al.  A Method for Computing Profile-Likelihood- Based Confidence Intervals , 1988 .

[25]  James M. Hyman,et al.  Being Sensitive to Uncertainty , 2007, Computing in Science & Engineering.

[26]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[27]  Maria Pia Saccomani,et al.  Structural vs Practical Identifiability in System Biology , 2013, IWBBIO.

[28]  J A Jacquez,et al.  Parameter estimation: local identifiability of parameters. , 1990, The American journal of physiology.

[29]  Paul M. J. Van den Hof,et al.  Test for local structural identifiability of high-order non-linearly parametrized state space models , 1996, Autom..

[30]  H. Rabitz,et al.  Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.

[31]  Joseph J. DiStefano,et al.  Complete parameter bounds and quasiidentifiability conditions for a class of unidentifiable linear systems , 1983 .

[32]  J. DiStefano,et al.  Extensions, validation, and clinical applications of a feedback control system simulator of the hypothalamo-pituitary-thyroid axis. , 2008, Thyroid : official journal of the American Thyroid Association.

[33]  E. Ward A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools , 2008 .

[34]  J. O. Trierweiler,et al.  A New Approach for Practical Identifiability Analysis Applied to Dynamic Phenomenological Models , 2012 .

[35]  R. Bellman,et al.  On structural identifiability , 1970 .

[36]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[37]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[38]  Michael P H Stumpf,et al.  Sensitivity, robustness, and identifiability in stochastic chemical kinetics models , 2011, Proceedings of the National Academy of Sciences.

[39]  H. T. Banks,et al.  A sensitivity matrix based methodology for inverse problem formulation , 2020, 2004.06831.

[40]  Jens Timmer,et al.  Data-based identifiability analysis of non-linear dynamical models , 2007, Bioinform..

[41]  A. W. van der Vaart,et al.  On Profile Likelihood , 2000 .

[42]  Patrick F. Rock,et al.  Sensitivity , 2014, Radiopaedia.org.

[43]  J. Jacquez,et al.  Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design , 1985 .

[44]  Johan Karlsson,et al.  An Efficient Method for Structural Identifiability Analysis of Large Dynamic Systems , 2012 .

[45]  R N Gunn,et al.  A procedure for generating locally identifiable reparameterisations of unidentifiable non-linear systems by the similarity transformation approach. , 1998, Mathematical biosciences.

[46]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .