The Value of Information for Populations in Varying Environments

The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon’s communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory.

[1]  Daniel Polani,et al.  Information: Currency of life? , 2009, HFSP journal.

[2]  Krishna B. Athreya,et al.  Classical and modern branching processes , 1997 .

[3]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[4]  D. Stephens Variance and the Value of Information , 1989, The American Naturalist.

[5]  Y.-H. Kim,et al.  A Coding Theorem for a Class of Stationary Channels with Feedback , 2007, 2007 IEEE International Symposium on Information Theory.

[6]  Carl T. Bergstrom,et al.  Shannon information and biological fitness , 2004, Information Theory Workshop.

[7]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[8]  Y. Iwasa,et al.  Optimal Mixed Strategies in Stochastic Environments , 1995 .

[9]  S. Stearns Daniel Bernoulli (1738): evolution and economics under risk , 2000, Journal of Biosciences.

[10]  Joel P. Brockman,et al.  What is Bet-Hedging , 1987 .

[11]  Andreas Wagner,et al.  Risk management in biological evolution. , 2003, Journal of theoretical biology.

[12]  Russell Lyons,et al.  A Conceptual Proof of the Kesten-Stigum Theorem for Multi-Type Branching Processes , 1997 .

[13]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[14]  L. Kruschwitz,et al.  Daniel Bernoulli: Entwurf einer neuen Theorie zur Bewertung von Lotterien. “Specimen theoriae novae de mensura sortis”, Commentarii Academiae Scientiarum Imperialis Petropolitanae 1738, S. 175–192. Aus dem Lateinischen übersetzt , 1996 .

[15]  John Maynard Smith,et al.  The Concept of Information in Biology , 2000, Philosophy of Science.

[16]  S. F. Taylor,et al.  Information and fitness , 2007, 0712.4382.

[17]  Arthur J. Robson,et al.  A Biological Basis for Expected and Non-expected Utility , 1996 .

[18]  T. Cover,et al.  Asymptotic optimality and asymptotic equipartition properties of log-optimum investment , 1988 .

[19]  Haim H. Permuter,et al.  On directed information and gambling , 2008, 2008 IEEE International Symposium on Information Theory.

[20]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[21]  D. Bernoulli Specimen theoriae novae de mensura sortis : translated into German and English , 1967 .

[22]  H. Atlan L'organisation biologique et la théorie de l'information , 1992 .

[23]  Sanjoy K. Mitter,et al.  Control with Limited Information , 2001, Eur. J. Control.

[24]  Michael Ruse,et al.  The Cambridge Companion to the Philosophy of Biology , 2007 .

[25]  S. Leibler,et al.  Polymer-population mapping and localization in the space of phenotypes. , 2006, Physical review letters.

[26]  Michael Ruse,et al.  What the philosophy of biology is : essays dedicated to David Hull , 1989 .

[27]  Leslie A. Real,et al.  Fitness, Uncertainty, and the Role of Diversification in Evolution and Behavior , 1980, The American Naturalist.

[28]  Jack W. Szostak,et al.  Functional information: Molecular messages , 2003, Nature.

[29]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[30]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[31]  Keith Devlin,et al.  Logic and information , 1991 .

[32]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[33]  Paul Nurse,et al.  Life, logic and information , 2008, Nature.

[34]  C. Shannon,et al.  The bandwagon (Edtl.) , 1956 .

[35]  N. Wiener,et al.  Behavior, Purpose and Teleology , 1943, Philosophy of Science.

[36]  Andrew R. Barron,et al.  A bound on the financial value of information , 1988, IEEE Trans. Inf. Theory.

[37]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  H. Marko,et al.  The Bidirectional Communication Theory - A Generalization of Information Theory , 1973, IEEE Transactions on Communications.

[39]  Imre Csiszár,et al.  Axiomatic Characterizations of Information Measures , 2008, Entropy.

[40]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[41]  Michael Mandelstam,et al.  On the Bandwagon? , 2007 .

[42]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[43]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[44]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[45]  J. Kingman Subadditive Ergodic Theory , 1973 .

[46]  J. J. Kelly A new interpretation of information rate , 1956 .

[47]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[48]  Christoph Adami,et al.  Information theory in molecular biology , 2004, q-bio/0405004.

[49]  H. Witsenhausen Separation of estimation and control for discrete time systems , 1971 .

[50]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[51]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[52]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[53]  L. Breiman Optimal Gambling Systems for Favorable Games , 1962 .

[54]  S. Ellner,et al.  THE EVOLUTIONARILY STABLE PHENOTYPE DISTRIBUTION IN A RANDOM ENVIRONMENT , 1995, Evolution; international journal of organic evolution.

[55]  N. Rashevsky Life, information theory, and topology , 1955 .

[56]  P. Samuelson The "fallacy" of maximizing the geometric mean in long sequences of investing or gambling. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Garud Iyengar,et al.  Growth optimal investment in horse race markets with costs , 2000, IEEE Trans. Inf. Theory.

[58]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[59]  Carl T. Bergstrom,et al.  The fitness value of information , 2005, Oikos.

[60]  Shripad Tuljapurkar,et al.  The Many Growth Rates and Elasticities of Populations in Random Environments , 2003, The American Naturalist.

[61]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[62]  W. Ashby,et al.  Requisite Variety and Its Implications for the Control of Complex Systems , 1991 .

[63]  Michael Gastpar,et al.  To code, or not to code: lossy source-channel communication revisited , 2003, IEEE Trans. Inf. Theory.

[64]  Gerhard Kramer,et al.  Directed information for channels with feedback , 1998 .

[65]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[66]  H. Quastler,et al.  Essays on the use of information theory in biology , 1953 .

[67]  E. Jablonka Information: Its Interpretation, Its Inheritance, and Its Sharing , 2002, Philosophia Scientiæ.

[68]  Peter Godfrey-Smith,et al.  Information in Biology , 2007 .

[69]  John H. Beatty,et al.  The Propensity Interpretation of Fitness , 1979, Philosophy of Science.

[70]  E. E. Dyakonova,et al.  Multitype branching processes in random environment , 2002, Russian Mathematical Surveys.

[71]  M. Christensen On the history of the Growth Optimal Portfolio Draft Version , 2005 .

[72]  John Beatty,et al.  Rethinking the Propensity Interpretation: A Peek Inside Pandora’s Box1 , 1989 .

[73]  R. Lewontin,et al.  On population growth in a randomly varying environment. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Swain,et al.  Strategies for cellular decision-making , 2009, Molecular systems biology.

[75]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .