What Are the Ants Doing? Vision-Based Tracking and Reconstruction of Control Programs

In this paper, we study the problem of going from a real-world, multi-agent system to the generation of control programs in an automatic fashion. In particular, a computer vision system is presented, capable of simultaneously tracking multiple agents, such as social insects. Moreover, the data obtained from this system is fed into a mode-reconstruction module that generates low-complexity control programs, i.e. strings of symbolic descriptions of control-interrupt pairs, consistent with the empirical data. The result is a mechanism for going from the real system to an executable implementation that can be used for controlling multiple mobile robots.

[1]  Roger W. Brockett,et al.  On the computer control of movement , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[2]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[3]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[4]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[5]  M. W. Shields An Introduction to Automata Theory , 1988 .

[6]  K. Åström,et al.  Comparison of Riemann and Lebesgue sampling for first order stochastic systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[7]  Dimitrios Hristu-Varsakelis,et al.  Directed graphs and motion description languages for robot navigation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[8]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[9]  James A. Hendler,et al.  Languages, behaviors, hybrid architectures, and motion control , 1998 .

[10]  Magnus Egerstedt,et al.  Motion Description Languages for Multi-Modal Control in Robotics , 2003, Control Problems in Robotics.

[11]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[13]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  I D Couzin,et al.  Self-organized lane formation and optimized traffic flow in army ants , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  M. Egerstedt,et al.  Reconstruction of low-complexity control programs from data , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[16]  Frank Dellaert,et al.  Efficient particle filter-based tracking of multiple interacting targets using an MRF-based motion model , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[17]  Martin Nilsson,et al.  Cooperative multi-robot box-pushing , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[18]  Rachid Deriche,et al.  Tracking line segments , 1990, Image Vis. Comput..

[19]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[20]  George J. Pappas,et al.  Coordination of Multiple Autonomous Vehicles , 2003 .

[21]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[22]  Xiaoming Hu,et al.  Formation constrained multi-agent control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[23]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[24]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[25]  Magnus Egerstedt,et al.  Mode Reconstruction for Source Coding and Multi-modal Control , 2003, HSCC.

[26]  Frank Dellaert,et al.  An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets , 2004, ECCV.