Mathematical software for Sturm-Liouville problems

Software is described for the Sturm-Liouville eigenproblem. Eigenvalues, eigenfunctions, and spectral density functions can be estimated with global error control. The method of approximating the coefficients forms the mathematical basis. The underlying algorithms are briefly described, and several examples are presented.

[1]  Charles T. Fulton,et al.  Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  P. Wynn,et al.  On a device for computing the _{}(_{}) tranformation , 1956 .

[3]  John D. Pryce,et al.  A new multi-purpose software package for Schrödinger and Sturm-Liouville computations , 1991 .

[4]  C. Fulton Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  On shooting algorithms for calculating Sturm-Liouville eigenvalues , 1988 .

[6]  S. Pruess,et al.  Eigenvalue and Eigenfunction Asymptotics for Regular Sturm-Liouville Problems , 1994 .

[7]  John D. Pryce,et al.  Error Control of Phase-Function Shooting Methods for Sturm-Liouville Problems , 1986 .

[8]  Steven Pruess,et al.  Estimating the Eigenvalues of Sturm–Liouville Problems by Approximating the Differential Equation , 1973 .

[9]  P. Hartman Ordinary Differential Equations , 1965 .

[10]  G. Fix,et al.  Asymptotic eigenvalues of Sturm-Liouville systems , 1967 .

[11]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[12]  Lawrence F. Shampine,et al.  Automatic Solution of the Sturm-Liouville Problem , 1978, TOMS.

[13]  S. Pruess Solving linear boundary value problems by approximating the coefficients , 1973 .

[14]  Jaroslav Kautsky,et al.  Equidistributing Meshes with Constraints , 1980 .

[15]  Paul B. Bailey,et al.  Algorithm 700: A Fortran software package for Sturm–Liouville problems , 1991, TOMS.

[16]  R. Anderssen,et al.  Asymptotic behavior of the eigenvalues of a Sturm-Liouville system with discontinuous coefficients , 1976 .

[17]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .