A dynamic approach to predicting bacterial growth in food.

[1]  J Baranyi,et al.  Predicting growth of Brochothrix thermosphacta at changing temperature. , 1995, International journal of food microbiology.

[2]  J Baranyi,et al.  Predicting fungal growth: the effect of water activity on Aspergillus flavus and related species. , 1994, International journal of food microbiology.

[3]  J Baranyi,et al.  A predictive model for the combined effect of pH, sodium chloride and storage temperature on the growth of Brochothrix thermosphacta. , 1993, International journal of food microbiology.

[4]  József Baranyi,et al.  A non-autonomous differential equation to model bacterial growth. , 1993 .

[5]  John Villadsen,et al.  Modelling of microbial kinetics , 1992 .

[6]  R. C. Whiting,et al.  A quantitative model for bacterial growth and decline , 1992 .

[7]  T. A. Roberts,et al.  A terminology for models in predictive microbiology—a reply to K.R. Davey , 1992 .

[8]  J F Van Impe,et al.  Dynamic mathematical model to predict microbial growth and inactivation during food processing , 1992, Applied and environmental microbiology.

[9]  J. Baranyi Notes on reparameterization of bacterial growth curves , 1992 .

[10]  W. Garthright Refinements in the prediction of microbial growth curves , 1991 .

[11]  Theodore P. Labuza,et al.  Predictive Microbiology for Monitoring Spoilage of Dairy Products with Time-Temperature Integrators , 1991 .

[12]  Ashok K. Srivastava,et al.  Characterization of Transient Cultures of Clostridium acetobutylicum , 1990 .

[13]  William H. Press,et al.  Numerical recipes , 1990 .

[14]  R. Vance Population growth in a time-varying environment , 1990 .

[15]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[16]  John G Phillips,et al.  Response Surface Model for Predicting the Effects of Temperature pH, Sodium Chloride Content, Sodium Nitrite Concentration and Atmosphere on the Growth of Listeria monocytogenes. , 1990, Journal of food protection.

[17]  P. Holgate Varieties of stochastic model: a comparative study of the Gompertz effect. , 1989, Journal of theoretical biology.

[18]  T. A. Roberts,et al.  Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. , 1988, International journal of food microbiology.

[19]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[20]  B. Mackey,et al.  The effect of incubation temperature and inoculum size on growth of salmonellae in minced beef. , 1988, International journal of food microbiology.

[21]  M. G. Smith The generation time, lag time, and minimum temperature of growth of coliform organisms on meat, and the implications for codes of practice in abattoirs , 1985, Journal of Hygiene.

[22]  Doraiswami Ramkrishna,et al.  Statistics and dynamics of procaryotic cell populations , 1967 .

[23]  T. A. Roberts,et al.  Some properties of a nonautonomous deterministic growth model describing the adjustment of the bacterial population to a new environment , 1993 .

[24]  E. Bradley,et al.  A theory of growth , 1976 .

[25]  K. E. Cooper The Theory of Antibiotic Inhibition Zones , 1963 .

[26]  J. Monod,et al.  Recherches sur la croissance des cultures bactériennes , 1942 .