A Cook's Tour of Equational Axiomatizations for Prefix Iteration

Prefix iteration is a variation on the original binary version of the Kleene star operation P * Q, obtained by restricting the first argument to be an atomic action, and yields simple iterative behaviours that can be equationally characterized by means of finite collections of axioms. In this paper, we present axiomatic characterizations for a significant fragment of the notions of equivalence and preorder in van Glabbeek's linear-time/branching-time spectrum over Milner's basic CCS extended with prefix iteration. More precisely, we consider ready simulation, simulation, readiness, trace and language semantics, and provide complete (in)equational axiomatizations for each of these notions over BCCS with prefix iteration. All of the axiom systems we present are finite, if so is the set of atomic actions under consideration.

[1]  Jan A. Bergstra,et al.  Readies and Failures in the Algebra of Communicating Processes , 1988, SIAM J. Comput..

[2]  Wan Fokkink,et al.  A Complete Equational Axiomatization for Prefix Iteration , 1994, Inf. Process. Lett..

[3]  Wang Yi,et al.  Clock Difference Diagrams , 1998, Nord. J. Comput..

[4]  Ulrich Kohlenbach The Computational Strength of Extensions of Weak König’s Lemma , 1998 .

[5]  Brian Nielsen,et al.  Real-Time Layered Video Compression Using SIMD Computation , 1999, ACPC.

[6]  Albert R. Meyer,et al.  Bisimulation can't be traced , 1988, POPL '88.

[7]  J. Conway Regular algebra and finite machines , 1971 .

[8]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[9]  Brian Nielsen,et al.  Towards reusable real-time objects , 1999, Ann. Softw. Eng..

[10]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[11]  Peter D. Mosses CASL: A Guided Tour of Its Design , 1998, WADT.

[12]  Rob J. van Glabbeek,et al.  A Complete Axiomatization for Branching Bisimulation Congruence of Finite-State Behaviours , 1993, MFCS.

[13]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[14]  Wang Yi,et al.  Efficient Timed Reachability Analysis Using Clock Difference Diagrams , 1998, CAV.

[15]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[16]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[17]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[18]  Huimin Lin An Interactive Proof Tool for Process Algebras , 1992, STACS.

[19]  Brian Nielsen,et al.  Towards Re-usable Real-Time Objects , 1998 .

[20]  Robin Milner,et al.  The Polyadic π-Calculus: a Tutorial , 1993 .

[21]  Luca Aceto,et al.  An Equational Axiomatization of Observation Congruence for Prefix Iteration , 1996, AMAST.

[22]  Kim G. Larsen,et al.  The power of reachability testing for timed automata , 1998, Theor. Comput. Sci..

[23]  Luca Aceto,et al.  Axiomatizing Prefix Iteration with Silent Steps , 1995, Inf. Comput..

[24]  Wang Yi,et al.  Efficient Timed Reachability Analysis using Clock Difference Diagrams , 1998 .

[25]  Luca Aceto,et al.  A Coock's Tour of Equational Axiomatizations for Prefix Iteration , 1998 .