Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.

[1]  Y. C. Wu,et al.  Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection. , 2013, Biomicrofluidics.

[2]  Christopher H Contag,et al.  Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope. , 2008, Optics express.

[4]  Malgorzata Kujawinska,et al.  A two directional electrostatic comb-drive X–Y micro-stage for MOEMS applications , 2010 .

[5]  Huikai Xie,et al.  A large vertical displacement electrothermal bimorph microactuator with very small lateral shift , 2008 .

[6]  R. Hofmann-Wellenhof,et al.  Reflectance confocal microscopy for skin diseases , 2012 .

[7]  N. Passilly,et al.  3D micro-optical lens scanner made by multi-wafer bonding technology , 2013, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[8]  Pin Long,et al.  General aspheric refractive micro‐optics fabricated by optical lithography using a high energy beam sensitive glass gray‐level mask , 1996 .

[9]  X. Zuo,et al.  Confocal laser endomicroscopy for the diagnosis of colorectal cancer in vivo , 2013, Journal of Digestive Diseases.

[10]  Joseph Shamir,et al.  Misaligned first-order optics: canonical operator theory , 1986 .

[11]  Kazunori Hoshino,et al.  Handheld subcellular-resolution single-fiber confocal microscope using high-reflectivity two-axis vertical combdrive silicon microscanner , 2008, Biomedical microdevices.

[12]  D. W. de Lima Monteiro,et al.  Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si. , 2003, Optics express.

[13]  Gary K. Fedder,et al.  Endoscopic optical coherence tomography with new MEMS mirror , 2003 .

[14]  Kazuhiro Hane,et al.  Micro-encoder using image obtained by ball lens assembled inside wafer , 2005 .

[15]  Bart Vandevelde,et al.  MEMS packaging and reliability: An undividable couple , 2012, Microelectron. Reliab..

[16]  M. Kraft,et al.  ICP polishing of silicon for high-quality optical resonators on a chip , 2012, 1208.5647.

[17]  Reinhard Voelkel,et al.  Wafer-scale micro-optics fabrication , 2012 .

[18]  Ki-Hun Jeong,et al.  Micromachined lens microstages for two-dimensional forward optical scanning. , 2010, Optics express.

[19]  Luke P. Lee,et al.  Micromachined transmissive scanning confocal microscope. , 2004, Optics letters.

[20]  A. Rouse,et al.  Clinical confocal microlaparoscope for real-time in vivo optical biopsies. , 2009, Journal of biomedical optics.

[21]  Woonggyu Jung,et al.  Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning. , 2009, Journal of biomedical optics.

[22]  Hong Xia,et al.  100% Fill-Factor Aspheric Microlens Arrays (AMLA) With Sub-20-nm Precision , 2009, IEEE Photonics Technology Letters.

[23]  B Messerschmidt,et al.  Endoscope-compatible confocal microscope using a gradient index-lens system , 2001 .

[24]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[25]  A. Ozcan,et al.  On-Chip Biomedical Imaging , 2013, IEEE Reviews in Biomedical Engineering.

[26]  Hugo Thienpont,et al.  Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques. , 2009, Optics express.

[27]  Sylwester Bargiel,et al.  Vertical Integration Technologies for Optical Transmissive 3-D Microscanner based on Glass Microlenses☆ , 2012 .

[28]  C. Gorecki,et al.  Electrostatically driven optical Z-axis scanner with thermally bonded glass microlens , 2010 .

[30]  Yung-Chun Lee,et al.  Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method. , 2012, Optics express.

[31]  G S Kino,et al.  Micromachined scanning confocal optical microscope. , 1996, Optics letters.

[32]  D. Grier A revolution in optical manipulation , 2003, Nature.

[33]  Sylwester Bargiel,et al.  Multi-wafer Bonding, Stacking and Interconnecting of Integrated 3-D MEMS Micro Scanners , 2014 .

[34]  Cheng-Tang Pan Silicon-based coupling platform for optical fiber switching in free space , 2004 .

[36]  Mattias Goksör,et al.  Optical tweezers applied to a microfluidic system. , 2004, Lab on a chip.

[37]  H. Miyajima,et al.  MEMS optical scanners for microscopes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Ole Hansen,et al.  Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication , 2005 .

[39]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .