Nanosheets-assembled hollowed-out hierarchical Co3O4 microrods for fast response/recovery gas sensor

Abstract Hollowed-out hierarchical Co3O4 microrods has been synthesized via the interfacial-reaction of CoC2O4·2H2O with NaOH. Field emission scanning electron microscopic and transmission electron microscopic results revealed that the Co3O4 samples were hollowed-out hierarchical microrod-like structure assembled by interlaced thin nanosheets (with thickness of around 7 nm). The gas sensing properties of the porous microrods Co3O4 were evaluated. The response/recovery time of the gas sensor to 100 ppm methanol and ethanol are 0.8/7.2 s and 0.8/10.8 s, respectively. Gas sensing measurement revealed that the hollowed-out hierarchical Co3O4 microrods exhibit high performance, especially fast response/recovery characteristics to methanol and ethanol. The enhancement of gas sensing properties is attributed to the thin thickness of nanosheets, large specific surface area, loose interior and through-pore structure. The good sensing performance suggests this hollowed-out hierarchical Co3O4 microrods could be a promising candidate as a sensing material for real-time monitoring gas sensor.

[1]  Zheng Lou,et al.  Hybrid Co3O4/SnO2 Core-Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas. , 2016, ACS applied materials & interfaces.

[2]  Xiangyang Ma,et al.  From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes , 2008, Nanotechnology.

[3]  P. Shen,et al.  One-step synthesis of mesoporous Al2O3–In2O3 nanofibres with remarkable gas-sensing performance to NOx at room temperature , 2014 .

[4]  Jenshan Lin,et al.  Recent advances in wide bandgap semiconductor biological and gas sensors , 2010 .

[5]  Zhifu Liu,et al.  Room temperature gas sensing of p-type TeO2 nanowires , 2007 .

[6]  B. Geng,et al.  Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: high-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. , 2011, Nanoscale.

[7]  Zheng Lou,et al.  Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties , 2014 .

[8]  M. Khil,et al.  Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process , 2008 .

[9]  Chueh-Yang Liu,et al.  Fabrication of Mesostructured Cobalt Oxide Sensor and Its Application for CO Detector , 2009 .

[10]  M. Hutchins,et al.  Comparison of different forms of black cobalt selective solar absorber surfaces , 1987 .

[11]  K. Arshak,et al.  Gas sensing properties of ZnFe2O4/ZnO screen-printed thick films , 2005 .

[12]  H. Fan,et al.  Fast economical synthesis of Fe-doped ZnO hierarchical nanostructures and their high gas-sensing performance , 2013 .

[13]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[14]  C. N. R. Rao,et al.  Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 and WO3 nanowires , 2006 .

[15]  Thorsten Wagner,et al.  Nanostructured Co3O4 as a CO gas sensor: Temperature-dependent behavior , 2015 .

[16]  Kengo Shimanoe,et al.  Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors , 2008 .

[17]  Bei Wang,et al.  HYDROTHERMAL SYNTHESIS AND OPTICAL, MAGNETIC, AND SUPERCAPACITANCE PROPERTIES OF NANOPOROUS COBALT OXIDE NANORODS , 2009 .

[18]  Yongjian Tang,et al.  High response to H2S gas with facile synthesized hierarchical ZnO microstructures , 2015 .

[19]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[20]  Deren Yang,et al.  One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications. , 2012, Nanoscale.

[21]  Jun Zhang,et al.  ZnO hollow spheres: Preparation, characterization, and gas sensing properties , 2009 .

[22]  Ji-Wook Yoon,et al.  Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity , 2014 .

[23]  C. Sow,et al.  Electrical and photoresponse properties of Co3O4 nanowires , 2012 .

[24]  S. El‐Safty,et al.  Meso- and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors , 2011 .

[25]  F. Zhang,et al.  Hierarchically Porous CuO Hollow Spheres Fabricated via a One-Pot Template-Free Method for High-Performance Gas Sensors , 2012 .

[26]  J. H. Lee,et al.  Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers , 2012 .

[27]  J. Watson,et al.  The tin oxide gas sensor and its applications , 1984 .

[28]  K. Kalcher,et al.  Structural and Spectroelectrochemical Investigations of Sol-Gel Derived Electrochromic Spinel Co[sub 3]O[sub 4] Films , 1996 .

[29]  Fan Hui,et al.  Preparation and Gas Sensitive Properties of ZnO-CuO Nanocomposites , 2008 .

[30]  A. K. Srivastava,et al.  Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network , 2003 .

[31]  S. Elouali,et al.  Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[32]  Guoxiu Wang,et al.  Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries , 2014, Nano Research.

[33]  Xin Guo,et al.  NO sensing by single crystalline WO3 nanowires , 2015 .

[34]  N. Yamazoe,et al.  Highly Selective CO Sensor Using Indium Oxide Doubly Promoted by Cobalt Oxide and Gold , 1997 .

[35]  Yeon-Tae Yu,et al.  Hydrothermal synthesis of single-crystalline nanocubes of Co3O4 , 2008 .

[36]  G. Zou,et al.  Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages , 2011 .

[37]  S. Morrison,et al.  Mechanism of semiconductor gas sensor operation , 1987 .

[38]  H. Fan,et al.  Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties , 2012 .

[39]  Vijayanand Subramanian,et al.  Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. , 2010, Talanta.

[40]  Xuewen Wang,et al.  A Facile Synthesis Method for Ni(OH)2 Ultrathin Nanosheets and Their Conversion to Porous NiO Nanosheets Used for Formaldehyde Sensing , 2012 .

[41]  J. H. Lee,et al.  C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction , 2010 .

[42]  S. Morrison Selectivity in semiconductor gas sensors , 1987 .

[43]  G. Lu,et al.  Synthesis and gas sensing properties of hierarchical SnO2 nanostructures , 2013 .

[44]  Qing Peng,et al.  Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. , 2008, Journal of the American Chemical Society.

[45]  Jian Jiang,et al.  Carbon-assisted synthesis of mesoporous SnO2 nanomaterial as highly sensitive ethanol gas sensor , 2013 .

[46]  L. Wan,et al.  Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. , 2006, The journal of physical chemistry. B.

[47]  Dieter Kohl,et al.  Function and applications of gas sensors , 2001 .

[48]  Ming-Yen Lu,et al.  Direct Conversion of Single‐Layer SnO Nanoplates to Multi‐Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties , 2009 .