CtaM Is Required for Menaquinol Oxidase aa3 Function in Staphylococcus aureus
暂无分享,去创建一个
Eric P. Skaar | Robert B. Gennis | R. Gennis | S. Gerdes | E. Skaar | Neal D. Hammer | L. Schurig-Briccio | Lici A. Schurig-Briccio | Svetlana Y. Gerdes
[1] C. von Wachenfeldt,et al. Terminal Oxidases of Bacillus subtilisStrain 168: One Quinol Oxidase, Cytochromeaa3 or Cytochrome bd, Is Required for Aerobic Growth , 2000, Journal of bacteriology.
[2] A. Malm,et al. Energy conservation in aerobically grown Staphylococcus aureus. , 1999, Research in microbiology.
[3] Peer Bork,et al. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy , 2011, Nucleic Acids Res..
[4] B. Snel,et al. Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.
[5] Eric P. Skaar,et al. Two Heme-Dependent Terminal Oxidases Power Staphylococcus aureus Organ-Specific Colonization of the Vertebrate Host , 2013, mBio.
[6] D. White,et al. Membrane Lipid Changes During Formation of a Functional Electron Transport System in Staphylococcus aureus , 1967, Journal of bacteriology.
[7] Anisah W. Ghoorah,et al. jMOTU and Taxonerator: Turning DNA Barcode Sequences into Annotated Operational Taxonomic Units , 2011, PloS one.
[8] K. C. Strasters,et al. CARBOHYDRATE METABOLISM OF STAPHYLOCOCCUS AUREUS. , 1963, Journal of general microbiology.
[9] Mark Blaxter,et al. Defining operational taxonomic units using DNA barcode data , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.
[10] E. Duthie,et al. Staphylococcal coagulase; mode of action and antigenicity. , 1952, Journal of general microbiology.
[11] Eric P. Skaar,et al. An Iron-Regulated Autolysin Remodels the Cell Wall To Facilitate Heme Acquisition in Staphylococcus lugdunensis , 2015, Infection and Immunity.
[12] V. A. Eremin,et al. [Variability of Staphylococcus aureus membranes depending on the growth phase of the culture]. , 1987, Mikrobiologicheskii zhurnal.
[13] H. H. Ramsey. ENDOGENOUS RESPIRATION OF STAPHYLOCOCCUS AUREUS , 1962, Journal of bacteriology.
[14] A. Richardson,et al. Glycolytic Dependency of High-Level Nitric Oxide Resistance and Virulence in Staphylococcus aureus , 2015, mBio.
[15] L. Thurlow,et al. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. , 2013, Cell host & microbe.
[16] Fangfang Xia,et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) , 2013, Nucleic Acids Res..
[17] U. Meyer. [Heme biosynthesis]. , 1975, Schweizerische medizinische Wochenschrift.
[18] Kenneth W. Bayles,et al. A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes , 2013, mBio.
[19] H. Taber,et al. ELECTRON TRANSPORT IN STAPHYLOCOCCI. PROPERTIES OF A PARTICLE PREPARATION FROM EXPONENTIAL PHASE STAPHYLOCOCCUS AUREUS. , 1964, Archives of biochemistry and biophysics.
[20] L. Hederstedt,et al. Bacillus subtilis CtaA and CtaB function in haem A biosynthesis , 1993, Molecular microbiology.
[21] R. Gennis,et al. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. , 2014, Biochimica et biophysica acta.
[22] S. Foster,et al. CtaA of Staphylococcus aureus Is Required for Starvation Survival, Recovery, and Cytochrome Biosynthesis , 1999, Journal of bacteriology.
[23] D. Lechardeur,et al. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. , 2012, Annual review of food science and technology.
[24] M. Contreras-Zentella,et al. A Novel Double Heme Substitution Produces a Functionalbo3Variant of the Quinol Oxidaseaa3ofBacillus cereus: PURIFICATION AND PARTIAL CHARACTERIZATION , 2003 .
[25] Chuan He,et al. Golden Pigment Production and Virulence Gene Expression Are Affected by Metabolisms in Staphylococcus aureus , 2010, Journal of bacteriology.
[26] V. Petrov,et al. Branched respiratory chain in aerobically grown Staphylococcus aureus —oxidation of ethanol by cells and protoplasts , 2004, Archives of Microbiology.
[27] Naryttza N. Diaz,et al. The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.
[28] H. Juan. Small Colony Variants: a Pathogenic Form of Bacteria that Facilitates Persistent and Recurrent Infections , 2009 .
[29] C. Rausch,et al. Microevolution of Cytochrome bd Oxidase in Staphylococci and Its Implication in Resistance to Respiratory Toxins Released by Pseudomonas , 2006, Journal of Bacteriology.
[30] P. Rangel,et al. Haem O and a putative cytochrome bo in a mutant of Bacillus cereus impaired in the synthesis of haem A , 1997, Archives of Microbiology.
[31] B. Barquera,et al. The superfamily of heme-copper respiratory oxidases , 1994, Journal of bacteriology.
[32] O. Schneewind,et al. Allelic replacement in Staphylococcus aureus with inducible counter-selection. , 2006, Plasmid.
[33] Renato J. Alves,et al. The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. , 2012, Biochimica et biophysica acta.
[34] M. Verkhovsky,et al. Oxygen as Acceptor. , 2009, EcoSal Plus.
[35] G. Richardson. The nutrition of Staphylococcus aureus. Necessity for uracil in anaerobic growth. , 1936, The Biochemical journal.
[36] Maria L. Gennaro,et al. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[37] James Hemp,et al. Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling. , 2008, Results and problems in cell differentiation.
[38] Y. Fujiwara,et al. Haem O can replace haem A in the active site of cytochrome c oxidase from thermophilic bacterium PS3 , 1991, FEBS letters.
[39] K. Morand,et al. Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes A and O. , 1994, The Journal of biological chemistry.
[40] R. Gennis,et al. The cytochrome bd respiratory oxygen reductases. , 2011, Biochimica et biophysica acta.
[41] I. Zhulin,et al. Terminal oxidases of Azoarcus sp. BH72, a strictly respiratory diazotroph , 1997, FEBS letters.
[42] Roberta B Carey,et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. , 2007, JAMA.
[43] A. Conde. Staphylococcus aureus infections. , 1998, The New England journal of medicine.
[44] S. Way,et al. Impact of either Elevated or Decreased Levels of Cytochrome bd Expression on Shigella flexneri Virulence , 1999, Journal of bacteriology.