Structures of triangulations of points

[1]  Incremental topological flipping works for regular triangulations , 1992, SCG '92.

[2]  Bernd Sturmfels,et al.  Constructions and complexity of secondary polytopes , 1990 .

[3]  Akira Tajima Optimality and Integer Programming Formulations of Triangulations in General Dimension , 1998, ISAAC.

[4]  Raimund Seidel Note – On the Number of Triangulations of Planar Point Sets , 1998, Comb..

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[7]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[8]  Günter Rote Degenerate convex hulls in high dimensions without extra storage , 1992, SCG '92.

[9]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[10]  Siu-Wing Cheng,et al.  A Study of the LMT-Skeleton , 1996, ISAAC.

[11]  G. Ziegler Lectures on Polytopes , 1994 .

[12]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[13]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[14]  Michael A. Facello,et al.  Implementation of a randomized algorithm for Delaunay and regular triangulations in three dimensions , 1995, Comput. Aided Geom. Des..

[15]  P. L. Powar,et al.  Minimal roughness property of the Delaunay triangulation: a shorter approach , 1992, Comput. Aided Geom. Des..

[16]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[17]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[18]  Rekha R. Thomas,et al.  Gröbner bases and triangulations of the second hypersimplex , 1995, Comb..

[19]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[20]  H. Imai,et al.  Enumeration of regular triangulations with computational results , 1996 .

[21]  Keiko Imai,et al.  A Branch-and-Cut Approach for Minimum Weight Triangulation , 1997, ISAAC.