Arcus: the x-ray grating spectrometer explorer

Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50) with unprecedented sensitivity – effective areas of >500 sq cm and spectral resolution >2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing-incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocket flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (~100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.

Mark L. Schattenburg | Robert Petre | Michael A. Nowak | Marshall W. Bautz | Catherine E. Grant | Jelle S. Kaastra | David N. Burrows | David P. Huenemoerder | Norbert S. Schulz | Butler Hine | Casey DeRoo | Frederik Paerels | Richard Willingale | Vadim Burwitz | Kirpal Nandra | Scott J. Wolk | Randall L. McEntaffer | Edward Hertz | Ryan Allured | Eric D. Miller | Randall K. Smith | Jörn Wilms | Paul B. Reid | Jeremy S. Sanders | Richard F. Mushotzky | J. Bookbinder | Alan P. Smale | Ralf K. Heilmann | Elisa Costantini | Katja Poppenhaeger | E. Morse | Joel N. Bregman | Adam R. Foster | S. Walker | Andrew F. Ptak | M. H. Abraham | L. Brenneman | Nancy S. Brickhouse | R. Carvalho | Peter N. Cheimets | Sir P Dawson | Abe D. Falcone | Kristin K. Madsen | Jon M. Miller | L. Plice | Pasquale Temi | Lynne Angela Valencic | A. Falcone | B. Hine | K. Nandra | C. DeRoo | R. Petre | A. Ptak | V. Burwitz | R. Willingale | R. Heilmann | M. Schattenburg | K. Poppenhaeger | J. Bregman | B. Hine | J. Kaastra | K. Madsen | M. Bautz | N. Schulz | R. Smith | L. Plice | A. Foster | M. Bautz | L. Brenneman | E. Costantini | E. Miller | P. Temi | J. Bookbinder | P. Cheimets | P. Reid | E. Hertz | N. Brickhouse | S. Wolk | M. Abraham | A. Smale | D. Burrows | L. Valencic | C. Grant | S. Walker | R. McEntaffer | D. Huenemoerder | R. Allured | S. Dawson | E. Morse | R. Mushotzky | N. Schulz | J. Wilms | D. N. Burrows | M. Nowak | P. Cheimets | J. Miller | F. Paerels | J. Bregman | R. Carvalho | J. Sanders | Jon M. Miller | Catherine E. Grant | J. Wilms | M. A. Nowak | Eric D. Miller | J. S. Sanders | Randall K. Smith | Margaret H. Abraham | Vadim Burwitz | Randall L. McEntaffer | K. Poppenhaeger | A. Ptak | P. Reid

[1]  G. Branduardi-Raymont,et al.  Multiwavelength campaign on Mrk 509 III. The 600 ks RGS spectrum: unravelling the inner region of an AGN , 2011, 1107.0658.

[2]  Julia C. Lee,et al.  Determining the Grain Composition of the Interstellar Medium with High-Resolution X-Ray Spectroscopy , 2005 .

[3]  Randall L. McEntaffer,et al.  Analytical alignment tolerances for off-plane reflection grating spectroscopy , 2013 .

[4]  Maximilien Collon,et al.  The ATHENA telescope and optics status , 2017, Optical Engineering + Applications.

[5]  J. Bregman,et al.  X-Ray Absorption from the Milky Way Halo and the Local Group , 2007, 0707.1699.

[6]  Luigi Gallo,et al.  The Canadian Astro-H Metrology System , 2014, Astronomical Telescopes and Instrumentation.

[7]  W. Cash X-ray optics: a technique for high resolution imaging. , 1987, Applied optics.

[8]  Alexander R. Bruccoleri,et al.  Fabrication process for 200 nm-pitch polished freestanding ultrahigh aspect ratio gratings , 2016 .

[9]  Brandon Hensley,et al.  MAGNETIC NANOPARTICLES IN THE INTERSTELLAR MEDIUM: EMISSION SPECTRUM AND POLARIZATION , 2012, 1205.7021.

[10]  Hannah Marlowe,et al.  Line spread functions of blazed off-plane gratings operated in the Littrow mounting , 2016, 1603.04839.

[11]  Steven M. Kahn,et al.  High-Resolution X-Ray Spectroscopy with Chandra and XMM-Newton , 2003 .

[12]  Paolo Conconi,et al.  Silicon pore optics for the ATHENA telescope , 2016, Astronomical Telescopes + Instrumentation.

[13]  Peter N. Cheimets,et al.  Optical design considerations and raytracing results for the Arcus grating spectrometer concept , 2016, Astronomical Telescopes + Instrumentation.

[14]  Mark L. Schattenburg,et al.  Critical-angle transmission grating technology development for high resolving power soft x-ray spectrometers on Arcus and Lynx , 2017, Optical Engineering + Applications.

[15]  Michael A. Nowak,et al.  Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions , 2016, Astronomical Telescopes + Instrumentation.

[16]  B. Draine,et al.  Graphite Revisited , 2016, 1608.02975.

[17]  Bruce T. Draine,et al.  POLARIZED FAR-INFRARED AND SUBMILLIMETER EMISSION FROM INTERSTELLAR DUST , 2008, 0809.2094.

[18]  Mark L. Schattenburg,et al.  Critical-angle x-ray transmission grating spectrometer with extended bandpass and resolving power > 10,000 , 2016, Astronomical Telescopes + Instrumentation.

[19]  Maximilien Collon,et al.  Qualification of silicon pore optics , 2014, Astronomical Telescopes and Instrumentation.

[20]  Gianpiero Tagliaferri,et al.  CONFIRMATION OF X-RAY ABSORPTION BY WARM-HOT INTERGALACTIC MEDIUM IN THE SCULPTOR WALL , 2010, 1001.3692.

[21]  D. Spiga,et al.  Optical integration of SPO mirror modules in the ATHENA telescope , 2017, Optical Engineering + Applications.

[22]  N. S. Brickhouse,et al.  X-RAY DETERMINATION OF THE VARIABLE RATE OF MASS ACCRETION ONTO TW HYDRAE , 2012, 1211.1710.

[23]  Marshall W. Bautz,et al.  Directly-deposited blocking filters for high-performance silicon x-ray detectors , 2016, Astronomical Telescopes + Instrumentation.

[24]  Mark L. Schattenburg,et al.  Development of a critical-angle transmission grating spectrometer for the International X-Ray Observatory , 2009, Optical Engineering + Applications.

[25]  Marcos Bavdaz,et al.  Development of ATHENA mirror modules , 2017, Optical Engineering + Applications.

[26]  Maximilien Collon,et al.  The Athena optics , 2015, SPIE Optical Engineering + Applications.

[27]  P. A. R. Ade,et al.  DEGREE-SCALE COSMIC MICROWAVE BACKGROUND POLARIZATION MEASUREMENTS FROM THREE YEARS OF BICEP1 DATA , 2013, 1310.1422.

[28]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[29]  Mark L. Schattenburg,et al.  The Chandra High‐Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight , 2005, astro-ph/0507035.

[30]  Ralf K. Heilmann,et al.  Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings , 2017, Optical Engineering + Applications.

[31]  Mark L. Schattenburg,et al.  High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy , 2015, SPIE Optical Engineering + Applications.

[32]  Mark L. Schattenburg,et al.  Critical-angle transmission grating spectrometer for high-resolution soft x-ray spectroscopy on the International X-ray Observatory , 2010, Astronomical Telescopes + Instrumentation.

[33]  Mark L. Schattenburg,et al.  The evolution of structure and feedback with Arcus , 2016, Astronomical Telescopes + Instrumentation.

[34]  Bruce Ravel,et al.  CONDENSED MATTER ASTROPHYSICS: A PRESCRIPTION FOR DETERMINING THE SPECIES-SPECIFIC COMPOSITION AND QUANTITY OF INTERSTELLAR DUST USING X-RAYS , 2009, 0906.3720.

[35]  G. Pareschi,et al.  Science requirements and optimization of the silicon pore optics design for the Athena mirror , 2014, Astronomical Telescopes and Instrumentation.