A New Distribution for Extreme Values: Regression Model, Characterizations and Applications

A new four parameter extreme value distribution is defined and studied. Various structural properties of the proposed distribution including ordinary and incomplete moments, generating functions, residual and reversed residual life functions, order statistics are investigated. Some useful characterizations based on two truncated moments as well as based on the reverse hazard function and on certain functions of the random variable are presented. The maximum likelihood method is used to estimate the model parameters. Further, we propose a new extended regression model based on the logarithm of the new distribution. The new distribution is applied to model three real data sets to prove empirically its flexibility.

[1]  Ali I. Genç Moments of order statistics of Topp–Leone distribution , 2012 .

[2]  A. Cavanié,et al.  A statistical relationship between individual heights and periods of storm waves , 1976 .

[3]  Wolegang Glanzel,et al.  Some consequences of a characterization theorem based on truncated moments , 1990 .

[4]  S. Nadarajah,et al.  Sociological Models Based on Fréchet Random Variables , 2008 .

[5]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[6]  Samuel Kotz,et al.  On some reliability measures and their stochastic orderings for the Topp–Leone distribution , 2005 .

[7]  G. Hamedani,et al.  The Beta Exponential Fréchet Distribution with Applications , 2017 .

[8]  Mohamed Mubarak,et al.  Parameter Estimation Based on the Frèchet Progressive Type II Censored Data with Binomial Removals , 2012 .

[9]  D. Gary Harlow,et al.  Applications of the Fréchet distribution function , 2004 .

[10]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[11]  W. J. Padgett,et al.  A Bootstrap Control Chart for Weibull Percentiles , 2006, Qual. Reliab. Eng. Int..

[12]  Arnold Court,et al.  Wind extremes as design factors , 1953 .

[13]  J. A. Battjes Probabilistic aspects of ocean waves , 1977 .

[14]  Zohdy M. Nofal,et al.  The Weibull Fréchet distribution and its applications , 2016 .

[15]  M. Aslam,et al.  Bayesian Estimation for Topp-Leone Distribution under Trimmed Samples , 2013 .

[16]  S. Kotz,et al.  Kurtosis of the Topp-Leone distributions , 2022 .

[17]  L. Draper,et al.  DERIVATION OF A `DESIGN WAVE` FROM INSTRUMENTAL RECORDS OF SEA WAVES. , 1963 .

[18]  Record values from a family of J-shaped distributions , 2011 .

[19]  S. Nadarajah,et al.  An alternative two-parameter gamma generated family of distributions: properties and applications , 2017 .

[20]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Samuel Kotz,et al.  Moments of some J-shaped distributions , 2003 .

[22]  On Generalized Gamma Convolution Distributions , 2013 .

[23]  Ahmed Z. Afify,et al.  The Transmuted Exponentiated Generalized-G Family of Distributions , 2015 .

[24]  Saralees Nadarajah,et al.  Topp–Leone generated family of distributions: Properties and applications , 2017 .

[25]  G. Cordeiro,et al.  THE BETA GENERALIZED HALF-NORMAL GEOMETRIC DISTRIBUTION , 2013 .

[26]  M. Earle,et al.  Height-Period Joint Probabilities in Hurricane Camille , 1974 .

[27]  Johan Segers,et al.  Inference for clusters of extreme values , 2003 .

[28]  M. R. Mahmoud,et al.  On the Transmuted Frechet Distribution , 2013 .

[29]  Narayanaswamy Balakrishnan,et al.  On families of beta- and generalized gamma-generated distributions and associated inference , 2009 .

[30]  G. G. Hamedani,et al.  The Topp-Leone Generated Weibull Distribution: Regression Model, Characterizations and Applications , 2016 .

[31]  Gauss M. Cordeiro,et al.  A New Lifetime Model: The Gamma Extended Fréchet Distribution , 2013, J. Stat. Theory Appl..

[32]  Extreme value analysis of wave heights , 1994 .

[33]  Nadeem Shafique Butt,et al.  On Six-Parameter Frechet Distribution: Properties and Applications , 2016 .

[34]  Indranil Ghosh,et al.  The Transmuted Marshall-Olkin Fr\'{e}chet Distribution: Properties and Applications , 2015 .

[35]  Leon E. Borgman,et al.  Probabilities for Highest Wave in Hurricane , 1973 .

[36]  G. Cordeiro,et al.  THE KUMARASWAMY MARSHALL-OLKIN FRÉCHET DISTRIBUTION WITH APPLICATIONS , 2016 .

[37]  S. Nadarajah,et al.  On Chen et al.’s Extreme Value Distribution , 2021 .

[38]  M. Fréchet Sur la loi de probabilité de l'écart maximum , 1928 .

[39]  L. Borgman MAXIMUM WAVE HEIGHT PROBABILITIES FOR A RANDOM NUMBER OF RANDOM INTENSITY STORMS , 1970 .

[40]  K. K. Jose,et al.  The Marshall-Olkin Fréchet Distribution , 2013 .

[41]  Thiago G. Ramires,et al.  A new generalized Weibull family of distributions: mathematical properties and applications , 2015, Journal of Statistical Distributions and Applications.

[42]  Wolfgang Glänzel,et al.  A Characterization Theorem Based on Truncated Moments and its Application to Some Distribution Families , 1987 .

[43]  Enrique Castillo,et al.  Engineering analysis of extreme value data : selection of models , 1992 .

[44]  Alexandre B. Simas,et al.  Some Results for Beta Fréchet Distribution , 2008, 0809.1873.

[45]  J. R. Batchelor,et al.  HL-A matching in treatment of burned patients with skin allografts. , 1970, Lancet.

[46]  G. Hamedani Characterizations of univariate continuous distributions. II , 2002 .

[47]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .