The convergence test of transformation performance of resource cities in China considering undesirable output

Abstract The main challenge for sustainable development of resource cities is to work out a feasible strategy for transformation processes. This paper introduces a new approach for analysis of transformation performance. Using the environmental production technology and a Malmquist resource performance index (MRPI), we conduct σ , absolute β and conditional β convergence tests for the transformation performance of 21 resource cities in China. The results show that MRPI does not follow the same trend as economic strength of three Chinese regions. In addition, the transformation performance results exhibit a convergence trend for the 21 resource cities.

[1]  Steven N. Durlauf,et al.  Convergence in International Output , 1995 .

[2]  Rolf Färe,et al.  Environmental production functions and environmental directional distance functions , 2007 .

[3]  Tsung-Sheng Chang,et al.  DEA-type models for designing optimal systems and determining optimal budgets , 2011, Math. Comput. Model..

[4]  Rolf Färe,et al.  Productivity and Undesirable Outputs: A Directional Distance Function Approach , 1995 .

[5]  Jin-Li Hu,et al.  Total-factor energy efficiency of regions in China , 2006 .

[6]  S. Durlauf,et al.  Interpreting Tests of the Convergence Hypothesis , 1994 .

[7]  Jeffrey D. Sachs,et al.  The curse of natural resources , 2001 .

[8]  Yang Li,et al.  The efficiencies and their changes of China’s resources-based cities employing DEA and Malmquist index models , 2012, Journal of Geographical Sciences.

[9]  Qunwei Wang,et al.  Efficiency measurement with carbon dioxide emissions: The case of China , 2012 .

[10]  Jin-Li Hu,et al.  Efficient energy-saving targets for APEC economies , 2007 .

[11]  Ramakrishnan Ramanathan,et al.  An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa , 2005 .

[12]  Almas Heshmati,et al.  A sequential Malmquist-Luenberger productivity index : Environmentally sensitive productivity growth considering the progressive nature of technology , 2010 .

[13]  Sardar M. N. Islam,et al.  DEA: Theory, Methods and Applications , 2009 .

[14]  W. Baumol Productivity Growth, Convergence, and Welfare: What the Long-run Data Show , 1985 .

[15]  Zhang Bao-sheng STUDY ON THE ECOLOGIC TRANSFORMATION OF RESOURCES MINING CITYJ U a Song-tao , 2005 .

[17]  Greg Halseth Resource Town Employment: Perceptions in Small Town British Columbia , 1999 .

[18]  Hamid Mohtadi,et al.  Environment, growth, and optimal policy design , 1996 .

[19]  Osman Zaim,et al.  Environmental efficiency in carbon dioxide emissions in the OECD: A non-parametric approach , 2000 .

[20]  Narendar Pani,et al.  Resource cities across phases of globalization: Evidence from Bangalore , 2009 .

[21]  R. Barro,et al.  Public Finance in Models of Economic Growth , 1990 .

[22]  José Luis Zofío,et al.  Environmental efficiency and regulatory standards: the case of CO2 emissions from OECD industries , 2001 .

[23]  M. Abramovitz Catching Up, Forging Ahead, and Falling Behind , 1986, The Journal of Economic History.

[24]  John L. Keane The Towns that Coal Built: The Evolution of Landscapes and Communities in Southern Colorado , 2014 .

[25]  D. S. Houghton Long-distance Commuting: a new Approach to Mining in Australia , 1993 .

[26]  Yanrui Wu,et al.  Environmental Efficiency and Environmental Total Factor Productivity Growth in China's Regional Economies (Zhongguo Quyu Huanjing Xiaolu yu Huanjing Quanyaosu Shengchanlu Zengzhang) , 2010 .

[27]  L. R. Christensen,et al.  MULTILATERAL COMPARISONS OF OUTPUT, INPUT, AND PRODUCTIVITY USING SUPERLATIVE INDEX NUMBERS* , 1982 .

[28]  Kankana Mukherjee,et al.  Energy use efficiency in U.S. manufacturing: A nonparametric analysis , 2008 .

[29]  Carolyn R. Bertozzi,et al.  Methods and Applications , 2009 .

[30]  中嶋 和久,et al.  環境 Environment について , 1992 .

[31]  Juan Aparicio,et al.  The relevance of DEA benchmarking information and the Least-Distance Measure: Comment , 2010, Math. Comput. Model..

[32]  Xuedu Lu,et al.  Sustaining Economic Growth in China under Energy and Climate Security Constraints , 2006 .

[33]  B. W. Ang,et al.  Slacks-based efficiency measures for modeling environmental performance , 2006 .

[34]  M. Kortelainen,et al.  Dynamic environmental performance analysis: A Malmquist index approach , 2008 .

[35]  HU Yu-ying On China’s Energy Consumption, CO_2 Emission and Sustainable Growth , 2010 .

[36]  Nazrul Islam,et al.  Growth Empirics: A Panel Data Approach , 1995 .

[37]  Wang Fei Discussion on Economic Transition of Resource-Typed Cities Using Systematic View , 2008 .

[38]  Yifan Zhou,et al.  The sustainability of China's major mining cities , 2008 .

[39]  Zhongbao Zhou,et al.  A generalized fuzzy DEA/AR performance assessment model , 2012, Math. Comput. Model..

[40]  B. W. Ang,et al.  Total factor carbon emission performance: A Malmquist index analysis , 2010 .

[41]  D. Vasile,et al.  PRODUCTIVITY GROWTH , 2008 .

[42]  Ali Asghar Foroughi,et al.  A generalized DEA model for inputs/outputs estimation , 2006, Math. Comput. Model..

[43]  Lindsey,et al.  Catching up. , 1999, The Harvard mental health letter.

[44]  Daniel Tyteca,et al.  On the Measurement of the Environmental Performance of Firms— A Literature Review and a Productive Efficiency Perspective , 1996 .