Constraints on relaxation rates for N-level quantum systems

We study the constraints imposed on the population and phase relaxation rates by the physical requirement of completely positive evolution for open N-level systems. The Lindblad operators that govern the evolution of the system are expressed in terms of observable relaxation rates, explicit formulas for the decoherence rates due to population relaxation are derived, and it is shown that there are additional, nontrivial constraints on the pure dephasing rates for N. 2. Explicit, experimentally testable inequality constraints for the decoherence rates are derived for three- and four-level systems, and the implications of the results are discussed for generic ladder, L, and V systems and transitions between degenerate energy levels.

[1]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[2]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[3]  Bruce W. Shore,et al.  Theory of Coherent Atomic Excitation , 1991 .

[4]  K. Kraus General state changes in quantum theory , 1971 .

[5]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[6]  E. B. Davies Quantum theory of open systems , 1976 .

[7]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[8]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[10]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[11]  F. T. Man Some Inequalities for Positive Definite Symmetric Matrices , 1970 .

[12]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[13]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[14]  Andrzej Kossakowski,et al.  Properties of Quantum Markovian Master Equations , 1978 .

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  Daniel Braun,et al.  Dissipative Quantum Chaos and Decoherence , 2001 .

[17]  K. Wódkiewicz,et al.  Quantum Markov channels for qubits , 2002, quant-ph/0211001.

[18]  Bruce W. Shore,et al.  The Theory of Coherent Atomic Excitation , 1991 .

[19]  D. Tannor,et al.  Phase space approach to theories of quantum dissipation , 1997 .

[20]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[21]  Restriction on relaxation times derived from the Lindblad-type master equations for two-level systems , 2002, quant-ph/0211007.

[22]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[23]  M. Sentís Quantum theory of open systems , 2002 .

[24]  Ian Percival,et al.  Quantum State Diffusion , 1998 .

[25]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .