The chemistry of TIG weld bead formation

TIG welding has high levels of stability and permits more refined control than the majority of other arc welding processes. However, it is well known that small changes in the chemical composition of the base metal and arc operating region can have a pronounced effect on the resulting weld bead shape, which reduces the ability to control and predict the process. Obviously, this reduces the reliability and controllability of TIG welding. This study reviews the variability of weld beads obtained in the TIG process, with small changes in chemical composition of the base metal, and A-TIG and TIG weldings with active gas. Aspects that are similar and unique to each case are highlighted and discussed. The mechanisms of weld bead shape presented in the literature are also presented and compared.

[1]  P. J. Modenesi,et al.  Efeito da densidade do fluxo e da presença de aditivos na soldagem ATIG de aço inoxidável austenítico , 2013 .

[2]  Hidetoshi Fujii,et al.  Weld Shape Variation and Electrode Oxidation Behavior under Ar-(Ar-CO2) Double Shielded GTA Welding , 2010 .

[3]  P. Paillard,et al.  Effect of fluxes containing oxides on tungsten inert gas welding process , 2006 .

[4]  K. Tseng,et al.  Performance of activated TIG process in austenitic stainless steel welds , 2011 .

[5]  Manabu Tanaka,et al.  Marangoni Convection and Welding Penetration in A-TIG Welding(Physics, Processes, Instruments & Measurements, INTERNATIONAL SYMPOSIUM OF JWRI 30TH ANNIVERSARY) , 2003 .

[6]  Nicolas Perry Etude et développement des flux solides en vue d'application en soudage ATIG appliqué au titane et ses alliages ainsi qu'aux aciers inoxydables , 2000 .

[7]  K. Nogi,et al.  Time Dependant Weld Shape in Ar-O2 Shielded Stationary GTA Welding , 2007 .

[8]  C. R. Heiple Mechanism for minor element effect on GTA fusion zone geometry , 1982 .

[9]  J. Lowke,et al.  Mechanisms giving increased weld depth due to a flux , 2005 .

[10]  D. Z. Li,et al.  Mechanisms increasing welding efficiency during new development of double shielded TIG process , 2010 .

[11]  T. DebRoy,et al.  An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations , 2008 .

[12]  K. Nogi,et al.  Marangoni convection in weld pool in CO2-Ar-shielded gas thermal arc welding , 2004 .

[13]  W. Lucas,et al.  Investigation into arc constriction by active fluxes for tungsten inert gas welding , 2000 .

[14]  Y. Lei,et al.  The study of surface-active element oxygen on flow patterns and penetration in A-TIG welding , 2006 .

[15]  K. Nogi,et al.  Marangoni convection and weld shape variations in He–CO2 shielded gas tungsten arc welding on SUS304 stainless steel , 2008 .

[16]  E. A. Skvortsov Role of electronegative elements in contraction of the arc discharge , 1998 .

[17]  G. Song,et al.  Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy , 2007 .

[18]  J. P. Farias,et al.  Soldagem de um aço inoxidável ferrítico com o processo A-TIG , 2009 .

[19]  Seiji Katayama,et al.  The mechanism of penetration increase in A-TIG welding , 2011 .

[20]  E. Nippes,et al.  Effect of Minor Elements on Fusion Zone Dimensions of Inconel 600 , 2013 .

[21]  K. Nogi,et al.  Effect of oxygen content in He–O2 shielding gas on weld shape in ultra deep penetration TIG , 2007 .

[22]  S. Sire,et al.  Amélioration des performances du soudage TIG des alliages d'aluminium : Le procédé FBTIG , 2002 .

[23]  K. Nogi,et al.  Arc ignitability, bead protection and weld shape variations for He-Ar-O2 shielded GTA welding on SUS304 stainless steel , 2009 .

[24]  K. Nogi,et al.  Marangoni Convection and Gas Tungsten Arc Weld Shape Variations on Pure Iron Plates , 2006 .

[25]  B. Huneau,et al.  Optimizing the design of silica coating for productivity gains during the TIG welding of 304L stainless steel , 2007 .

[26]  H. Fujii,et al.  Weld shape variation and electrode protection under Ar–(Ar–O2) double shielded GTA welding , 2009 .

[27]  D. Li,et al.  Weld Pool Shape Variations and Electrode Protection in Double Shielded TIG Welding , 2010 .

[28]  M. Ushio,et al.  Effects of activating flux on arc phenomena in gas tungsten arc welding , 2000 .

[29]  S. Marya,et al.  Productivity Gains by Flux Bounded TIG Welding of Aluminum , 2003 .

[30]  K. Nogi,et al.  Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2–Ar shielded GTA welding , 2004 .

[31]  G. Kaptay,et al.  An Improved Theoretical Model for A-TIG Welding Based on Surface Phase Transition and Reversed Marangoni Flow , 2012, Metallurgical and Materials Transactions A.

[32]  李清明,et al.  Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding , 2007 .

[33]  Jun Shen,et al.  Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints , 2011 .

[34]  János Dobránszky,et al.  Comparison of penetration profiles of different TIG process , 2009 .

[35]  S. Pierce Thermocapillary and arc phenomena in stainless steel welding , 1993 .

[36]  Manabu Tanaka,et al.  Weld Penetration and Marangoni Convection with Oxide Fluxes in GTA Welding. , 2002 .

[37]  K. Mills,et al.  The effect of welding parameters on penetration in GTA welds , 1993 .

[38]  J. Leinonen Heat-to-heat variations in gas-tungsten-arc (GTA) weld penetration of austenitic stainless steels , 1987 .

[39]  Paulo José Modenesi,et al.  TIG welding with single-component fluxes , 2000 .

[40]  K. Tseng Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels , 2013 .

[41]  Liming Liu,et al.  AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys , 2008 .

[42]  S. Pellerin,et al.  TIG and A-TIG welding experimental investigations and comparison to simulation , 2012 .

[43]  M. Marya,et al.  Chloride contributions in flux-assisted GTA welding of magnesium alloys , 2002 .

[44]  P. Chapelle,et al.  Effects of flux containing fluorides on TIG welding process , 2007 .

[45]  Kuang-Hung Tseng,et al.  Comparisons between TiO2- and SiO2-flux assisted TIG welding processes. , 2012, Journal of nanoscience and nanotechnology.

[46]  G. S. Mills,et al.  GTA Weldability Studies on High Manganese Stainless Steel , 2013 .

[47]  K. Nogi,et al.  Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding , 2003 .

[48]  Effect of Anode Composition on Tungsten Arc Characteristics , 2013 .

[49]  Hidetoshi Fujii,et al.  Marangoni convection and weld shape variations in Ar-O2 and Ar-CO2 shielded GTA welding , 2004 .

[50]  P. J. Modenesi,et al.  Effect of flux density and the presence of additives in ATIG welding of austenitic stainless steel , 2015 .

[51]  Kenneth C. Mills,et al.  Marangoni effects in welding , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[52]  C. Chou,et al.  Evaluation of TIG flux welding on the characteristics of stainless steel , 2005 .

[53]  Zhaodong Zhang,et al.  Effect of Cadmium Chloride Flux in Active Flux TIG Welding of Magnesium Alloys , 2006 .

[54]  C. Chou,et al.  Study of the Performance of Stainless Steel A-TIG Welds , 2008 .