Geometric integrators for higher-order mechanics on Lie groups
暂无分享,去创建一个
[1] P. Crouch,et al. The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .
[2] Frank Chongwoo Park,et al. Smooth invariant interpolation of rotations , 1997, TOGS.
[3] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[4] Darryl D. Holm. Book Review: Geometric Mechanics, Part II: Rotating, Translating and Rolling , 2008 .
[5] J. Marsden,et al. Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.
[6] Lyle Noakes,et al. Non-null Lie quadratics in E3 , 2004 .
[7] L. Machado,et al. Higher-order smoothing splines versus least squares problems on Riemannian manifolds , 2010 .
[8] L. Noakes. Null cubics and Lie quadratics , 2003 .
[9] A. Bloch,et al. Dynamic interpolation on Riemannian manifolds: an application to interferometric imaging , 2004, Proceedings of the 2004 American Control Conference.
[10] Lyle Noakes,et al. Cubic Splines on Curved Spaces , 1989 .
[11] J. Moser,et al. Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .
[12] A. Bobenko,et al. Discrete Lagrangian Reduction, Discrete Euler–Poincaré Equations, and Semidirect Products , 1999, math/9906108.
[13] Jerrold E. Marsden,et al. Geometric, variational integrators for computer animation , 2006, SCA '06.
[14] Vijay Kumar,et al. On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..
[15] L. Younes,et al. On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.
[16] P. Crouch,et al. On the geometry of Riemannian cubic polynomials , 2001 .
[17] J. Marsden,et al. Dirac structures in Lagrangian mechanics Part II: Variational structures , 2006 .
[18] Katherine Renee Fister. Applications of Optimal Control , 1996 .
[19] J. C. Simo,et al. Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .
[20] Michael I. Miller,et al. Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.
[21] E. Celledoni. Lie group methods , 2009 .
[22] Daniel Rueckert,et al. Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation , 2011, International Journal of Computer Vision.
[23] N. McClamroch,et al. Lie group variational integrators for the full body problem , 2005, math/0508365.
[24] J. Logan,et al. First integrals in the discrete variational calculus , 1972 .
[25] Michael F. Cohen,et al. State of the Art in Image Synthesis , 1990, Advances in Computer Graphics.
[26] S. Reich. Backward Error Analysis for Numerical Integrators , 1999 .
[27] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[28] Lyle Noakes,et al. Duality and Riemannian cubics , 2006, Adv. Comput. Math..
[29] G. Rowlands. A numerical algorithm for Hamiltonian systems , 1991 .
[30] Tomasz Popiel,et al. Higher order geodesics in Lie groups , 2007, Math. Control. Signals Syst..
[31] Darryl D. Holm,et al. Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions , 2011, 1407.0273.
[32] Leonardo Colombo,et al. On the geometry of higher-order variational problems on Lie groups , 2011, ArXiv.
[33] M. Berry. Lectures on Mechanics , 1993 .
[34] A. Dragt,et al. Lie methods for nonlinear dynamics with applications to accelerator physics , 2011 .
[35] M. Ortiz,et al. The variational formulation of viscoplastic constitutive updates , 1999 .
[36] J. Marsden,et al. Mechanical integrators derived from a discrete variational principle , 1997 .
[37] Mark Austin,et al. Almost Poisson Integration of Rigid Body Systems , 1993 .
[38] G. Benettin,et al. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .
[39] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[40] R. Giambò,et al. An analytical theory for Riemannian cubic polynomials , 2002 .
[41] B. M. Fulk. MATH , 1992 .
[42] Betty Jean Harmsen. The discrete calculus of variations , 1995 .
[43] K. Conrad,et al. Group Actions , 2018, Cyber Litigation: The Legal Principles.
[44] Darryl D. Holm,et al. Invariant Higher-Order Variational Problems , 2010, Communications in Mathematical Physics.
[45] Leonardo Colombo,et al. Discrete second-order Euler-Poincar\'e equations. Applications to optimal control , 2011, 1109.4716.
[46] Jerrold E. Marsden,et al. Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties , 2008, Found. Comput. Math..
[47] J. Marsden,et al. Symplectic-energy-momentum preserving variational integrators , 1999 .
[48] G. Jaroszkiewicz,et al. Principles of discrete time mechanics: I. Particle systems , 1997, hep-th/9703079.
[49] Franccois-Xavier Vialard,et al. Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View , 2010, 1003.3895.
[50] T. D. Lee,et al. Difference equations and conservation laws , 1987 .
[51] P. Crouch,et al. Splines of class Ck on non-euclidean spaces , 1995 .
[52] M. De Leon,et al. Formalisme hamiltonien symplectique sur les fibrés tangents d'ordre supérieur , 1985 .