Geometric integrators for higher-order mechanics on Lie groups

This paper develops a structure-preserving numerical integration scheme for a class of higher-order mechanical systems. The dynamics of these systems are governed by invariant variational principles defined on higher-order tangent bundles of Lie groups. The variational principles admit Lagrangians that depend on acceleration, for example. The symmetry reduction method used in the Hamilton--Pontryagin approach for developing variational integrators of first-order mechanics is extended here to higher order. The paper discusses the general approach and then focuses on the primary example of Riemannian cubics. Higher-order variational integrators are developed both for the discrete-time integration of the initial value problem and for a particular type of trajectory-planning problem. The solution of the discrete trajectory-planning problem for higher-order interpolation among points on the sphere illustrates the approach.

[1]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[2]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[3]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[4]  Darryl D. Holm Book Review: Geometric Mechanics, Part II: Rotating, Translating and Rolling , 2008 .

[5]  J. Marsden,et al.  Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.

[6]  Lyle Noakes,et al.  Non-null Lie quadratics in E3 , 2004 .

[7]  L. Machado,et al.  Higher-order smoothing splines versus least squares problems on Riemannian manifolds , 2010 .

[8]  L. Noakes Null cubics and Lie quadratics , 2003 .

[9]  A. Bloch,et al.  Dynamic interpolation on Riemannian manifolds: an application to interferometric imaging , 2004, Proceedings of the 2004 American Control Conference.

[10]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[11]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[12]  A. Bobenko,et al.  Discrete Lagrangian Reduction, Discrete Euler–Poincaré Equations, and Semidirect Products , 1999, math/9906108.

[13]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[14]  Vijay Kumar,et al.  On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..

[15]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[16]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[17]  J. Marsden,et al.  Dirac structures in Lagrangian mechanics Part II: Variational structures , 2006 .

[18]  Katherine Renee Fister Applications of Optimal Control , 1996 .

[19]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[20]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[21]  E. Celledoni Lie group methods , 2009 .

[22]  Daniel Rueckert,et al.  Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation , 2011, International Journal of Computer Vision.

[23]  N. McClamroch,et al.  Lie group variational integrators for the full body problem , 2005, math/0508365.

[24]  J. Logan,et al.  First integrals in the discrete variational calculus , 1972 .

[25]  Michael F. Cohen,et al.  State of the Art in Image Synthesis , 1990, Advances in Computer Graphics.

[26]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[27]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[28]  Lyle Noakes,et al.  Duality and Riemannian cubics , 2006, Adv. Comput. Math..

[29]  G. Rowlands A numerical algorithm for Hamiltonian systems , 1991 .

[30]  Tomasz Popiel,et al.  Higher order geodesics in Lie groups , 2007, Math. Control. Signals Syst..

[31]  Darryl D. Holm,et al.  Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions , 2011, 1407.0273.

[32]  Leonardo Colombo,et al.  On the geometry of higher-order variational problems on Lie groups , 2011, ArXiv.

[33]  M. Berry Lectures on Mechanics , 1993 .

[34]  A. Dragt,et al.  Lie methods for nonlinear dynamics with applications to accelerator physics , 2011 .

[35]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[36]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[37]  Mark Austin,et al.  Almost Poisson Integration of Rigid Body Systems , 1993 .

[38]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[39]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[40]  R. Giambò,et al.  An analytical theory for Riemannian cubic polynomials , 2002 .

[41]  B. M. Fulk MATH , 1992 .

[42]  Betty Jean Harmsen The discrete calculus of variations , 1995 .

[43]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[44]  Darryl D. Holm,et al.  Invariant Higher-Order Variational Problems , 2010, Communications in Mathematical Physics.

[45]  Leonardo Colombo,et al.  Discrete second-order Euler-Poincar\'e equations. Applications to optimal control , 2011, 1109.4716.

[46]  Jerrold E. Marsden,et al.  Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties , 2008, Found. Comput. Math..

[47]  J. Marsden,et al.  Symplectic-energy-momentum preserving variational integrators , 1999 .

[48]  G. Jaroszkiewicz,et al.  Principles of discrete time mechanics: I. Particle systems , 1997, hep-th/9703079.

[49]  Franccois-Xavier Vialard,et al.  Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View , 2010, 1003.3895.

[50]  T. D. Lee,et al.  Difference equations and conservation laws , 1987 .

[51]  P. Crouch,et al.  Splines of class Ck on non-euclidean spaces , 1995 .

[52]  M. De Leon,et al.  Formalisme hamiltonien symplectique sur les fibrés tangents d'ordre supérieur , 1985 .