A SPH Depth Integrated Model for Popocatepetl 2001 Lahar.

Lahars at volcanoes inundate surrounding areas and damage or destroy nearby communities. Unlike any other volcanic hazard, lahars do not require an eruption to occur. They can be triggered by bad weather or by edifice failure long after an eruption a timing that can worsen the hazard. Modeling of lahars has become an important tool in the assessment of the related hazards in order to undertake appropriate mitigation actions and reduce the associated risks.

[1]  D. Laigle,et al.  Comparison of 2D debris-flow simulation models with field events , 2006 .

[2]  Gary A. Smith,et al.  Volcanic influences on terrestrial sedimentation , 1989 .

[3]  Computer modeling of large rock slides , 1986 .

[4]  M. Castillo-Rodríguez,et al.  Estimation of lahar flow velocity on Popocatépetl volcano (Mexico) , 2007 .

[5]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[6]  Jasim Imran,et al.  A numerical model of submarine debris flow with graphical user interface , 2001 .

[7]  M. Pastor,et al.  A depth‐integrated, coupled SPH model for flow‐like landslides and related phenomena , 2009 .

[8]  Alexandre Remaître,et al.  Flow behaviour and runout modelling of a complex debris flow in a clay‐shale basin , 2005 .

[9]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[10]  Philippe Coussot,et al.  Numerical modeling of mudflows , 1997 .

[11]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[13]  Jean-Pierre Vilotte,et al.  Spreading of a granular mass on a horizontal plane , 2004 .

[14]  Dieter Rickenmann,et al.  Empirical Relationships for Debris Flows , 1999 .

[15]  O. Zienkiewicz,et al.  Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution , 1984 .

[16]  J. N. Hutchinson A sliding–consolidation model for flow slides , 1986 .

[17]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[18]  K. Hutter,et al.  Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[19]  M. Quecedo,et al.  Modelling tailings dams and mine waste dumps failures , 2002 .

[20]  H Chen,et al.  Numerical simulation of debris flows , 2000 .

[21]  Ralph O. Kehle,et al.  Physical Processes in Geology , 1972 .

[22]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[23]  Thomas C. Pierson,et al.  A rheologic classification of subaerial sediment-water flows , 1987 .

[24]  C. Renschler,et al.  Updating channel morphology in digital elevation models: lahar assessment for Tenenepanco-Huiloac Gorge, Popocatépetl volcano, Mexico , 2008 .

[25]  I. Vardoulakis,et al.  Degradations and Instabilities in Geomaterials , 2004 .

[26]  Tamotsu Takahashi,et al.  Mechanical Characteristics of Debris Flow , 1978 .

[27]  P. M. Naghdi,et al.  ON BASIC EQUATIONS FOR MIXTURES. , 1969 .

[28]  M. Pastor,et al.  Static and dynamic behaviour of soils : a rational approach to quantitative solutions. I. Fully saturated problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[30]  Pierre Y. Julien,et al.  Laboratory Analysis of Mudflow Properties , 1988 .

[31]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[32]  Cheng-lung Chen,et al.  Generalized Viscoplastic Modeling of Debris Flow , 1988 .

[33]  Timothy R. H. Davies,et al.  Spreading of rock avalanche debris by mechanical fluidization , 1982 .

[34]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[35]  H. Glicken Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington , 1996 .

[36]  L. Capra,et al.  The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazards , 2004 .

[37]  Javier Bonet,et al.  A corrected smooth particle hydrodynamics formulation of the shallow-water equations , 2005 .

[38]  O. Hungr,et al.  A model for the analysis of rapid landslide motion across three-dimensional terrain , 2004 .

[39]  M. Quecedo,et al.  Finite element modelling of free surface flows on inclined and curved beds , 2003 .

[40]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[41]  J. Robert Buchler,et al.  The Numerical Modelling of Nonlinear Stellar Pulsations , 1990 .

[42]  L. Franzi,et al.  On the evaluation of debris flows dynamics by means of mathematical models , 2003 .

[43]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[44]  D. Palacios,et al.  Glacier retreat during the recent eruptive period of Popocaté petl volcano, Mexico , 2007, Annals of Glaciology.

[45]  F. Legros The mobility of long-runout landslides , 2002 .

[46]  Chris S. Renschler,et al.  A GIS-based method to determine the volume of lahars: Popocatépetl volcano, Mexico , 2009 .

[47]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[48]  Giovanni B. Crosta,et al.  Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps) , 2008 .

[49]  Xin Huang,et al.  A perturbation solution for Bingham-plastic mudflows , 1997 .

[50]  Jean-Pierre Vilotte,et al.  Numerical modeling of self‐channeling granular flows and of their levee‐channel deposits , 2006 .

[51]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[52]  Xin Huang,et al.  A Herschel–Bulkley model for mud flow down a slope , 1998, Journal of Fluid Mechanics.

[53]  N. Rajaratnam,et al.  Experimental Study of Debris Flows , 1994 .

[54]  M. Quecedo,et al.  Numerical modelling of the propagation of fast landslides using the finite element method , 2004 .

[55]  Bruce Hunt,et al.  Newtonian Fluid Mechanics Treatment of Debris Flows and Avalanches , 1994 .

[56]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[57]  M. I. Herreros,et al.  Modelling of Landslides: (II) Propagation , 2004 .

[58]  Maria Nicolina Papa,et al.  Numerical simulation of real debris-flow events , 2000 .

[59]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[60]  O. C. Zienkiewicz,et al.  DRAINED, UNDRAINED, CONSOLIDATING AND DYNAMIC BEHAVIOUR ASSUMPTIONS IN SOILS , 1980 .

[61]  Kelin X. Whipple,et al.  Open‐Channel Flow of Bingham Fluids: Applications in Debris‐Flow Research , 1997, The Journal of Geology.

[62]  Kenneth J. Hsü,et al.  Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls , 1975 .

[63]  T. E. Lang,et al.  A Biviscous Modified Bingham Model of Snow Avalanche Motion , 1983, Annals of Glaciology.

[64]  J. Monaghan,et al.  A refined particle method for astrophysical problems , 1985 .

[65]  C. Mei,et al.  Slow spreading of a sheet of Bingham fluid on an inclined plane , 1989, Journal of Fluid Mechanics.

[66]  R. M. Bowen,et al.  Incompressible porous media models by use of the theory of mixtures , 1980 .

[67]  M. Quecedo,et al.  Simple Approximation to Bottom Friction for Bingham Fluid Depth Integrated Models , 2004 .