Abstract Goerss-Hopkins theory
暂无分享,去创建一个
[1] T. Lawson,et al. NOTES ON THE CONSTRUCTION OF tmf , 2007 .
[2] Piotr Pstrągowski. Chromatic homotopy is algebraic when $p > n^{2}+n+1$ , 2018 .
[3] Aaron Mazel-Gee. Goerss--Hopkins obstruction theory for $\infty$-categories , 2018, 1812.07624.
[4] Minimal atomic complexes , 2002, math/0206067.
[5] M. Levine. The Adams-Novikov spectral sequence and Voevodsky's slice tower , 2013, 1311.4179.
[6] H. Toda. On spectra realizing exterior parts of the steenrod algebra , 1971 .
[7] W. Dwyer,et al. A classification theorem for diagrams of simplicial sets , 1984 .
[8] V. Drinfeld,et al. On Some Finiteness Questions for Algebraic Stacks , 2011, 1108.5351.
[9] Mark Hovey,et al. Invertible Spectra in the E(n)‐Local Stable Homotopy Category , 1999 .
[10] Douglas C. Ravenel,et al. Nilpotence and Periodicity in Stable Homotopy Theory. , 1992 .
[11] A. Neeman. Non-Left-Complete Derived Categories , 2011, 1103.5539.
[12] Piotr Pstrągowski. Synthetic spectra and the cellular motivic category , 2018, Inventiones mathematicae.
[13] J. Lurie. Higher Topos Theory , 2006, math/0608040.
[14] Piotr Pstrągowski. Moduli of $\Pi$-algebras , 2017 .
[15] Piotr Pstrkagowski. Chromatic homotopy is algebraic when $p>n^{2}+n+1$ , 2018, 1810.12250.
[16] J. Adams,et al. Stable homotopy and generalised homology , 1974 .
[17] Constanze Roitzheim,et al. Monoidality of Franke's Exotic Model , 2010, 1004.4114.
[18] D. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres , 1986 .
[19] P. Goerss,et al. A resolution of the K(2)-local sphere at the prime 3 , 2005, 0706.2175.
[20] J. Milnor,et al. The Steenrod Algebra and Its Dual , 2010 .
[21] J. Tate,et al. Formal moduli for one-parameter formal Lie groups , 1966 .
[22] P. Egger,et al. A class of 2-local finite spectra which admit a v21-self-map , 2016, Advances in Mathematics.
[23] Comodules and Landweber exact homology theories , 2003, math/0301232.
[24] J. Milnor. THE STEENROD ALGEBRA AND ITS DUAL1 , 1958 .
[25] W. Dwyer,et al. The realization space of a Π-algebra: a moduli problem in algebraic topology , 2004 .
[26] H. Margolis. Spectra and the Steenrod Algebra: Modules over the Steenrod Algebra and the Stable Homotopy Category , 1983 .
[27] M. Hopkins,et al. Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups , 2004 .
[28] P. Goerss,et al. Chromatic splitting for the K(2)–local sphere at p = 2 , 2017, Geometry & Topology.
[29] Sakinah,et al. Vol. , 2020, New Medit.
[30] M. Hopkins,et al. Higher real K‐theories and topological automorphic forms , 2009, 0910.0617.
[31] C. Rezk,et al. Notes on the Hopkins-Miller theorem , 1998 .
[32] J. M. Boardman. Conditionally Convergent Spectral Sequences , 1999 .
[33] GALOIS EXTENSIONS OF STRUCTURED RING SPECTRA , 2005, math/0502183.
[34] C. Rezk,et al. The congruence criterion for power operations in Morava $E$-theory , 2009, 0902.2499.
[35] Piotr Pstrągowski,et al. Chromatic homotopy theory is algebraic when p > n2 + n + 1 , 2021 .