Abstract Goerss-Hopkins theory

We present an abstract version of Goerss-Hopkins theory in the setting of a prestable $\infty$-category equipped with a suitable periodicity operator. In the case of the $\infty$-category of synthetic spectra, this yields obstructions to realizing a comodule algebra as a homology of a commutative ring spectrum, recovering the results of Goerss and Hopkins.

[1]  T. Lawson,et al.  NOTES ON THE CONSTRUCTION OF tmf , 2007 .

[2]  Piotr Pstrągowski Chromatic homotopy is algebraic when $p > n^{2}+n+1$ , 2018 .

[3]  Aaron Mazel-Gee Goerss--Hopkins obstruction theory for $\infty$-categories , 2018, 1812.07624.

[4]  Minimal atomic complexes , 2002, math/0206067.

[5]  M. Levine The Adams-Novikov spectral sequence and Voevodsky's slice tower , 2013, 1311.4179.

[6]  H. Toda On spectra realizing exterior parts of the steenrod algebra , 1971 .

[7]  W. Dwyer,et al.  A classification theorem for diagrams of simplicial sets , 1984 .

[8]  V. Drinfeld,et al.  On Some Finiteness Questions for Algebraic Stacks , 2011, 1108.5351.

[9]  Mark Hovey,et al.  Invertible Spectra in the E(n)‐Local Stable Homotopy Category , 1999 .

[10]  Douglas C. Ravenel,et al.  Nilpotence and Periodicity in Stable Homotopy Theory. , 1992 .

[11]  A. Neeman Non-Left-Complete Derived Categories , 2011, 1103.5539.

[12]  Piotr Pstrągowski Synthetic spectra and the cellular motivic category , 2018, Inventiones mathematicae.

[13]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[14]  Piotr Pstrągowski Moduli of $\Pi$-algebras , 2017 .

[15]  Piotr Pstrkagowski Chromatic homotopy is algebraic when $p>n^{2}+n+1$ , 2018, 1810.12250.

[16]  J. Adams,et al.  Stable homotopy and generalised homology , 1974 .

[17]  Constanze Roitzheim,et al.  Monoidality of Franke's Exotic Model , 2010, 1004.4114.

[18]  D. Ravenel Complex Cobordism and Stable Homotopy Groups of Spheres , 1986 .

[19]  P. Goerss,et al.  A resolution of the K(2)-local sphere at the prime 3 , 2005, 0706.2175.

[20]  J. Milnor,et al.  The Steenrod Algebra and Its Dual , 2010 .

[21]  J. Tate,et al.  Formal moduli for one-parameter formal Lie groups , 1966 .

[22]  P. Egger,et al.  A class of 2-local finite spectra which admit a v21-self-map , 2016, Advances in Mathematics.

[23]  Comodules and Landweber exact homology theories , 2003, math/0301232.

[24]  J. Milnor THE STEENROD ALGEBRA AND ITS DUAL1 , 1958 .

[25]  W. Dwyer,et al.  The realization space of a Π-algebra: a moduli problem in algebraic topology , 2004 .

[26]  H. Margolis Spectra and the Steenrod Algebra: Modules over the Steenrod Algebra and the Stable Homotopy Category , 1983 .

[27]  M. Hopkins,et al.  Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups , 2004 .

[28]  P. Goerss,et al.  Chromatic splitting for the K(2)–local sphere at p = 2 , 2017, Geometry & Topology.

[29]  Sakinah,et al.  Vol. , 2020, New Medit.

[30]  M. Hopkins,et al.  Higher real K‐theories and topological automorphic forms , 2009, 0910.0617.

[31]  C. Rezk,et al.  Notes on the Hopkins-Miller theorem , 1998 .

[32]  J. M. Boardman Conditionally Convergent Spectral Sequences , 1999 .

[33]  GALOIS EXTENSIONS OF STRUCTURED RING SPECTRA , 2005, math/0502183.

[34]  C. Rezk,et al.  The congruence criterion for power operations in Morava $E$-theory , 2009, 0902.2499.

[35]  Piotr Pstrągowski,et al.  Chromatic homotopy theory is algebraic when p > n2 + n + 1 , 2021 .