Supersolvable Frame-matroid and Graphic-lift Lattices

A geometric lattice is a frame if its matroid, possibly after enlargement, has a basis such that every atom lies under a join of at most two basis elements. Examples include all subsets of a classical root system. Using the fact that finitary frame matroids are the bias matroids of biased graphs, we characterize modular coatoms in frames of finite rank and we describe explicitly the frames that are supersolvable. We apply the characterizations to three kinds of example. A geometric lattice is a graphic lift if it can be extended to contain an atom whose upper interval is graphic. We characterize modular coatoms in and supersolvability of graphic lifts of finite rank and we examine families analogous to the frame examples.

[1]  R. Stanley Hyperplane arrangements, interval orders, and trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Thomas Zaslavsky,et al.  Biased graphs. I. Bias, balance, and gains , 1989, J. Comb. Theory, Ser. B.

[3]  Robert Gill The number of elements in a generalized partition semilattice , 1998, Discret. Math..

[4]  Thomas Zaslavsky Frame Matroids and Biased Graphs , 1994, Eur. J. Comb..

[5]  Hiroaki Terao,et al.  Arrangements of hyperplanes and their freeness I , 1980 .

[6]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[7]  Richard P. Stanley,et al.  Modular elements of geometric lattices , 1971 .

[8]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[9]  Geoff Whittle,et al.  Dowling group geometries and the critical problem , 1989, J. Comb. Theory, Ser. B.

[10]  Christos A. Athanasiadis On Free Deformations of the Braid Arrangement , 1998, Eur. J. Comb..

[11]  A. U.S.,et al.  Tractable Partially Ordered Sets Derived from Root Systems and Biased Graphs , 1997 .

[12]  Günter M. Ziegler,et al.  Broken circuit complexes: Factorizations and generalizations , 1991, J. Comb. Theory B.

[13]  Tom Brylawski,et al.  Modular constructions for combinatorial geometries , 1975 .

[14]  Michel Jambu,et al.  Free arrangements of hyperplanes and supersolvable lattices , 1984 .

[15]  Thomas Zaslavsky,et al.  The Geometry of Root Systems and Signed Graphs , 1981 .

[16]  Luis Paris,et al.  Combinatorics of inductively factored arrangements , 1995, Eur. J. Comb..

[17]  Paul H. Edelman,et al.  Free hyperplane arrangements betweenAn−1 andBn , 1994 .

[18]  J. Kahn,et al.  Varieties of combinatorial geometries , 1982 .

[19]  Günter M. Ziegler Algebraic combinatorics of hyperplane arrangements , 1987 .

[20]  Bruce E. Sagan,et al.  A Generalization of Semimodular Supersolvable Lattices , 1995, J. Comb. Theory, Ser. A.

[21]  G. Dirac On rigid circuit graphs , 1961 .

[22]  Thomas A. Dowling,et al.  A class of geometric lattices based on finite groups , 1973 .

[23]  Hiroaki Terao,et al.  Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula , 1981 .

[24]  J. M. S. Simões Pereira,et al.  On subgraphs as matroid cells , 1972 .

[25]  Hiroaki Terao,et al.  Factorizations of the Orlik-Solomon algebras , 1992 .

[26]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[27]  Tom Brylawski,et al.  An Affine Representation for Transversal Geometries , 1975 .

[28]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .